Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2401345, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38647436

RESUMO

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.

2.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38597317

RESUMO

Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional graphs only model the pairwise connectivity in molecules, failing to adequately represent higher order connections, such as multi-center bonds and conjugated structures. To tackle this challenge, we introduce molecular hypergraphs and propose Molecular Hypergraph Neural Networks (MHNNs) to predict the optoelectronic properties of organic semiconductors, where hyperedges represent conjugated structures. A general algorithm is designed for irregular high-order connections, which can efficiently operate on molecular hypergraphs with hyperedges of various orders. The results show that MHNN outperforms all baseline models on most tasks of organic photovoltaic, OCELOT chromophore v1, and PCQM4Mv2 datasets. Notably, MHNN achieves this without any 3D geometric information, surpassing the baseline model that utilizes atom positions. Moreover, MHNN achieves better performance than pretrained GNNs under limited training data, underscoring its excellent data efficiency. This work provides a new strategy for more general molecular representations and property prediction tasks related to high-order connections.

3.
Adv Mater ; 36(16): e2313074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237120

RESUMO

Development of polymer donors with simple chemical structure and low cost is of great importance for commercial application of organic solar cells (OSCs). Here, side-chain random copolymer PMQ-Si605 with a simply 6,7-difluoro-3-methylquinoxaline-thiophene backbone and 5% siloxane decoration of side chain is synthesized in comparison with its alternating copolymer PTQ11. Relative to molecular weight (Mn) of 28.3 kg mol-1 for PTQ11, the random copolymer PMQ-Si605 with minor siloxane decoration is beneficial for achieving higher Mn up to 51.1 kg mol-1. In addition, PMQ-Si605 can show stronger aggregation ability and faster charge mobility as well as more efficient exciton dissociation in active layer as revealed by femtosecond transient absorption spectroscopy. With L8-BO-F as acceptor, its PMQ-Si605 based OSCs display power conversion efficiency (PCE) of 18.08%, much higher than 16.21% for PTQ11 based devices. With another acceptor BTP-H2 to optimize the photovoltaic performance of PMQ-Si605, further elevated PCEs of 18.50% and 19.15% can be achieved with the binary and ternary OSCs, respectively. Furthermore, PMQ-Si605 based active layers are suitable for processing in high humidity air, an important factor for massive production of OSCs. Therefore, the siloxane decoration on polymer donors is promising, affording PMQ-Si605 as a high-performing and low cost candidate.

4.
Mater Horiz ; 11(1): 283-296, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37943155

RESUMO

Enhancing the solution-processability of conjugated polymers (CPs) without diminishing their thin-film crystallinity is crucial for optimizing charge transport in organic field-effect transistors (OFETs). However, this presents a classic "Goldilocks zone" dilemma, as conventional solubility-tuning methods for CPs typically yield an inverse correlation between solubility and crystallinity. To address this fundamental issue, a straightforward skeletal randomization strategy is implemented to construct a quinoid-donor conjugated polymer, PA4T-Ra, that contains para-azaquinodimethane (p-AQM) and oligothiophenes as repeat units. A systematic study is conducted to contrast its properties against polymer homologues constructed following conventional solubility-tuning strategies. An unusually concurrent improvement of solubility and crystallinity is realized in the random polymer PA4T-Ra, which shows moderate polymer chain aggregation, the highest crystallinity and the least lattice disorder. Consequently, PA4T-Ra-based OFETs, fabricated under ambient air conditions, deliver an excellent hole mobility of 3.11 cm2 V-1 s-1, which is about 30 times higher than that of the other homologues and ranks among the highest for quinoidal CPs. These findings debunk the prevalent assumption that a random polymer backbone sequence results in decreased crystallinity. The considerable advantages of the skeletal randomization strategy illuminate new possibilities for the control of polymer aggregation and future design of high-performance CPs, potentially accelerating the development and commercialization of organic electronics.

5.
J Phys Chem Lett ; 14(40): 9103-9111, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792476

RESUMO

Ionic liquids (ILs) exhibit fascinating properties due to special Z-bonds and have been widely used in electrochemical systems. The local Z-bond networks potentially cause a discrepancy in electrochemical properties. Understanding the correlations between the Z-bond energy (EZ-bond) and the electrochemical properties is helpful to identify appropriate ILs. It is difficult to estimate the correlations from single density functional theory calculations or molecular dynamic simulations. In this work, a machine learning model targeting the electronic density (ρBCP) of Z-bonds has been trained successfully, as expected for use in systems above the nanoscale size. The connection between the EZ-bond and the electrochemical potential window in ILs@TiO2, as well as that between the EZ-bond and the charge carrier mobility in ILs-PEDOT:Tos@SiO2, was separately investigated. This study highlights an efficient model for predicting ρBCP in nanoscale systems and anticipates exploring the connection between Z-bonds and the electrochemical properties of IL-based systems.

6.
Adv Mater ; 35(39): e2302924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37262926

RESUMO

Short-wavelength infrared (SWIR) organic light-emitting diodes (OLEDs) have attracted great interest due to their potential applications in biological imaging, infrared lighting, optical communication, environmental monitoring, and surveillance. Due to an intrinsic limitation posed by the energy-gap law, achieving high-brightness in SWIR OLEDs remains a challenge. Herein, the study reports the use of novel A-D-A'-D-A type small molecules NTQ and BTQ for high-performance SWIR OLEDs. Benefiting from multiple D-A effect in conjugated skeleton, the small molecules NTQ and BTQ exhibit narrow optical gaps of 1.23 and 1.13 eV, respectively. SWIR electroluminescence (EL) emission from OLEDs based on NTQ and BTQ is achieved, with emission peaks at 1140 and 1175 nm, respectively. Not only owing to a negligible efficiency roll-off across the full range of applied current density but also the ability to afford a high operation current density of 5200 mA cm-2 , the resultant SWIR OLEDs based on NTQ exhibit a maximal radiant exitance of =1.12 mW cm-2 . Furthermore, the NTQ-based OLEDs also possess sub-gap turn-on voltage of 0.85 V, which is close to the physical limits derived from the generalized Kirchhoff and Planck equation. This work demonstrates that A-D-A'-D-A type small molecules offer significant promise for NIR/SWIR emitting material innovations.

7.
Small ; 19(33): e2301474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086141

RESUMO

Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m-2 h-1 in calm air and 25.3 kg m-2 h-1 at a gentle breeze of 2 m s-1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.

8.
BMC Neurol ; 23(1): 69, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782173

RESUMO

BACKGROUND: Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a recently identified recurrent meningoencephalomyelitis with GFAP immunoglobulin G presence in the serum or cerebrospinal fluid (CSF) as a specific biomarker. GFAP astrocytopathy is closely associated with the occurrence of some tumors and often coexists with other antibodies, such as the N-methyl-D-aspartate receptor and aquaporin-4 antibodies. However, GFAP astrocytopathy complicated by central nervous system infection is rare. CASE PRESENTATION: Here, we present the case of a patient admitted to a local hospital due to a prominent fever and cough. The patient had a 1-month history of headaches before admission that were not considered serious at the time. Metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid revealed a high sequence number of Legionella pneumophila and a few mycobacteria. His cough and fever improved significantly after antibiotic treatment. Still, a slight headache remained. Subsequently, his condition worsened, and he visited our hospital with a disturbance of consciousness. Mycobacterium tuberculosis was detected with mNGS of the CSF, while the CSF and serum were also positive for GFAP antibodies. Following anti-tuberculosis and steroid therapy, the patient's symptoms improved, and he tested negative for the GFAP antibody. CONCLUSION: This is the first reported case of GFAP astrocytopathy complicated by tuberculous meningoencephalitis. Due to overlaps in the clinical manifestations of the two diseases, GFAP astrocytopathy is sometimes misdiagnosed as tuberculous meningoencephalitis. Therefore, in addition to ensuring careful identification of the two diseases, clinicians need to be aware of their possible co-existence.


Assuntos
Legionella , Meningoencefalite , Pneumonia , Tuberculose Meníngea , Masculino , Humanos , Proteína Glial Fibrilar Ácida , Tosse , Meningoencefalite/complicações , Meningoencefalite/diagnóstico , Autoanticorpos/líquido cefalorraquidiano , Febre , Legionella/metabolismo
9.
J Colloid Interface Sci ; 633: 754-763, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36493741

RESUMO

Electrocatalytic water splitting in an alkaline medium is recognized as the promising technology to sustainably generate clean hydrogen energy via hydrogen evolution reaction (HER), while the sluggish water dissociation and subsequent *H adsorption steps greatly retarded the reaction kinetics and efficiency of the overall hydrogen evolution process. Whilst nitrogen (N)-doped carbon-based materials are attractive candidates for promoting HER activity, the facile fabrication and gaining a deeper insight into the electrocatalytic mechanism are still challenging. Herein, inspired by the Diels-Alder reaction, we precisely tailored six-membered pyridinic N and five-membered pyrrolic N sites at the edge of the carbon substrates. Comprehensive analysis validates that the participation of pyridinic N (electron-withdrawing) and pyrrolic N (electron-releasing) will induce the charge rearrangements, and further generate local electrophilic and nucleophilic domains in adjacent carbon rings, which guarantees the occurrence of water dissociation to generate protons and the subsequent adsorption of *H intermediates through electrostatic interactions, thereby facilitating the overall reaction kinetics. To this end, the optimal NC-ZnCl2-25 % electrocatalysts present excellent alkaline HER activity (η10 = 45 mV, Tafel slop of 37.7 mV dec-1) superior to commercial Pt/C.


Assuntos
Hidrogênio , Prótons , Reação de Cicloadição , Carbono , Nitrogênio , Pirróis , Água
10.
Polymers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080672

RESUMO

With the increase in awareness of environmental protection and the shortage of oil resources, bio-based polyurethane has attracted increasing attention due to its ecological friendliness, low cost and easy degradation. In this paper, using Eugenol (Eug) derived from plant essential oils as the raw resource, syringyl ethanol (Syol) was prepared, and three monomers were obtained by the reaction of the Eug or Syol with Hexamethylene diisocyanate (HDI)or 4,4'-methylene di (phenyl isocyanate) (MDI), respectively. Then, three novel bio-based polyurethanes, P(Eug-HDI), P(Syol-HDI) and P(Syol-MDI), were synthesized by olefin metathesis polymerization. The effects of the catalyst type, reaction solvent, reaction temperature, reaction time, molar ratio of catalyst dosage and metal salts on the Eug-HDI olefin metathesis polymerization were investigated in detail. Under the optimal conditions, the yield reached 64.7%. It is worth noting that the addition of metal Ni salts could significantly promote the polymerization, in which NiI2 could increase the yield to 86.6%. Furthermore, the thermal decomposition behaviors of these bio-based polyurethanes were explored by DSC and variable temperature infrared spectroscopy. The test results showed that P(Eug-HDI) had a reversible thermal decomposition and a certain self-healing performance. This paper provided a new method for the preparation of bio-based polyurethane.

11.
ACS Appl Mater Interfaces ; 14(36): 40851-40861, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044804

RESUMO

At present, most solution-processed molybdenum oxide (s-MoOx) hole transport layers (HTLs) are still mainly used in conventional organic solar cells (OSCs) but unsuitable for inverted OSCs. Herein, we demonstrate for the first time an annealing-insensitive, alcohol-processed MoOx HTL that can universally enable high-performance conventional and inverted OSCs. The s-MoOx HTL is spin-coated from the MoOx nanoparticle dispersion in alcohol, where the MoOx nanoparticles are synthesized by simple nonaqueous pyrolysis conversion of MoO2(acac)2. The MoOx nanoparticles possess uniform and very small sizes of less than 5 nm and can be well dispersed in alcohol, so the s-MoOx HTLs on ITO and active layer both show an overall uniform and smooth surface, suitable for conventional and inverted OSCs. In addition, the s-MoOx HTL possesses decent optical transmittance and appropriate work function. Utilizing the s-MoOx HTL annealed between room temperature and 110 °C and PM6:Y6 active layer, the conventional OSCs show an excellent power conversion efficiency (PCE) of 16.64-17.09% and the inverted OSCs also show an excellent PCE of 15.74-16.28%, which indicate that the s-MoOx HTL could be annealing-insensitive and universal for conventional and inverted OSCs. Moreover, conventional and inverted OSCs with the s-MoOx HTLs annealed at 80 °C both exhibit optimal PCEs of 17.09 and 16.28%, respectively, which are separately superior than that of the PEDOT:PSS-based conventional OSCs (16.94%) and the thermally evaporated MoO3 (e-MoO3)-based inverted OSCs (16.03%). Under light soaking and storage aging in air, the unencapsulated inverted OSCs based on the s-MoOx HTL show similarly excellent ambient stability compared to the e-MoOx-based devices. In addition, the s-MoOx HTL also shows a universal function in conventional and inverted OSCs with PBDB-T:ITIC and PM6:L8-BO active layers. Notably, the s-MoOx-based conventional and inverted OSCs with the PM6:L8-BO active layer exhibit very excellent PCEs of 18.21 and 17.12%, respectively, which are slightly higher than those of the corresponding PEDOT:PSS-based device (18.17%) and e-MoO3-based device (17.00%). The annealing-insensitive, alcohol-processed MoOx HTL may be very promising for flexible and large-scale processing conventional/inverted OSCs.

12.
ACS Appl Mater Interfaces ; 14(31): 35985-35996, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900128

RESUMO

Non-fullerene acceptors (NFAs) carrying a 1,1-dicyanomethylene-3-indanone (IC) end-group are the most powerful ones to boost the power conversion efficiency of organic solar cells (OSCs). However, the well-known Knoevenagel condensation of the mono-halogenated IC end-group will result in an NFA isomeric effect, a chemical issue that needs to be addressed. Herein, facile preparations and separations of three well-defined mono-brominated isomers BTzIC-2Br-δ, BTzIC-2Br-γ, and BTzIC-2Br-δγ via column chromatography with a well-chosen mixing solvent were demonstrated for Knoevenagel condensation, and their structures were verified by NMR spectra and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) mass spectra. It is the first time that an asymmetric isomer BTzIC-2Br-δγ is reported, and the regioisomeric effect on optoelectronic properties can be investigated based on all three isomers. Moreover, the single-crystal structure was successfully achieved for the symmetric molecule BTzIC-2Br-γ. With benzodithiophene (BDT)-free PFBT4T-T20 as an easily accessible and low-cost polymer donor, the three isomers could show differentiated device performances, with a power conversion efficiency order of BTzIC-2Br-γ (16.00%) > BTzIC-2Br-δγ (15.81%) > BTzIC-2Br-δ (15.29%). The best efficiency of 16.00% achieved with BTzIC-2Br-γ is among the highest ones for binary OSCs based on the low-cost BDT-free donors. The facile and complete synthesis of isomeric NFAs with mono-halogenated IC end-groups would promote the elucidation of the structure-property relationship.

13.
ChemSusChem ; 15(15): e202200789, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35606681

RESUMO

Side-chain engineering has been proved to show profound impact on polymer properties and blend morphology. Herein, the critical role of siloxane-terminated alkoxy side chains was revealed by a tiny decorating method through which the molar content of siloxane-terminated alkoxy side chain was fixed to 5 %, and its alkyl linker was the only tuning factor. The pentylene, heptylene, and nonylene linkers were designed and used to synthesize wide-bandgap polymers PQSi505, PQSi705, and PQSi905, respectively. Interestingly, the siloxane pendant of combinatory side chain exhibited a distinct impact on molecular packing when its branching position shifted slightly. Among the three polymers, PQSi705 had the strongest aggregation and the highest packing order. Finally, toluene-processed organic solar cells (OSCs) based on PQSi705 and Y6-BO achieved the best power conversion efficiency of 15.77 %. This work suggests that siloxane pendant can serve as a powerful modulator to enhance the photovoltaic performance of OSCs.

14.
Macromol Rapid Commun ; 43(22): e2200199, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35380177

RESUMO

Although optical engineering strategy has been utilized to optimize average visible transmittance (AVT) of semi-transparent organic solar cells (ST-OSCs), judicious selection of active layer materials should be more direct and basic. Herein, an efficient ternary active layer is constructed with a wide bandgap (3.0 eV) fluorescent polymer FC-S1 as host donor, a middle bandgap polymer PM6 as guest donor, and a narrow bandgap non-fullerene Y6-BO as acceptor. Using FC-S1 as the host donor can allow more visible photons to penetrate the device. In the absence of optical engineering, the ternary ST-OSC with FC-S1:PM6:Y6-BO = 1:0.3:1.5 active layer of 30 nm thickness displays a much higher AVT of 49.28% than that of 32.34% for a PM6:Y6-BO = 1.3:1.5 based binary ST-OSC. The ternary ST-OSC provides a good power conversion efficiency of 6.01%, only slightly lower than 7.15% for the binary ST-OSC. The ternary ST-OSC also demonstrates a color rendering index (CRI) of 87 and a correlated color temperature (CCT) of 6916 K, all better than CRI of 80 and CCT of 9022 K for the binary ST-OSC. Moreover, the backbone of FC-S1 is mainly composed by fluorene and carbazole, two easily-accessible aromatic rings, which would meet low-cost concern of ST-OSCs.


Assuntos
Corantes , Polímeros , Temperatura , Engenharia
15.
ACS Appl Mater Interfaces ; 14(8): 10407-10418, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175034

RESUMO

The development of high capacity and stable cathodes is the key to the successful commercialization of aqueous zinc-ion batteries. However, significant solvation penalties limit the choice of available positive electrodes. Herein, hydrated intercalation is proposed to promote reversible (de)intercalation within host materials by rationally designing a matching electrode. In contrast to previously reported works, the as-prepared electrode (NHVO@CC) can achieve fast and reversible intercalation of hydrated zinc ions in the interlayer gap, leading to a high capacity of 517 mAh g-1 at 0.1 A g-1 and excellent electrode stability for long-term cycling. Besides, as a consequence of the flexibility of the NHVO@CC electrode, a quasi-solid-state battery was achieved with equally advantageous electrochemical behavior under various bending states. The proposed hydrated cation direct insertion/extraction sets up an efficient way of developing high-performance positive electrodes for aqueous batteries.

16.
Phys Chem Chem Phys ; 24(10): 5903-5913, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195622

RESUMO

As a new class of electrodes, MXenes have shown excellent performance in supercapacitors. At the same time, ionic liquid (IL) electrolytes with wider electrochemical windows are expected to substantially increase the supercapacitor capacitance. The combination of MXenes and ILs is promising for energy storage devices with a high energy density and power density. The studies have indicated that the surface terminations of MXenes and the functional groups of ILs, can both strongly influence the supercapacitor's performance. However, studies at the molecular level are still lacking. In this work, we performed molecular dynamics simulations to investigate the interfacial structures and their influence on the energy storage mechanism. The results show that the two ILs exhibit very different charging rates, though the charge densities are similar after charging equilibrium. The interfacial analysis reveals different electrical double-layer (EDL) structures, in which most cations stay perpendicular to the Ti3C2(OH)2 electrode when some cations shift to a vertical arrangement near the Ti3C2O2 electrode. Such structures have led to the higher capacitance of the Ti3C2(OH)2 electrode, even more than 2 times that of the Ti3C2O2 electrode as the potential difference ranges from 0 to 2 V. It was also found that hydrogen bonds between the -OH groups of HEMIm+ cations and terminations of the MXene play an important role in improving the capacitances by aggregating more HEMIm+ cations on the surface of the Ti3C2(OH)2 electrode. Our work provides clear mechanistic evidence that both terminations of the MXene electrodes and functional groups of the IL electrolytes affect the interfacial structures and the EDL formation, further leading to the different supercapacitor performance, which will be helpful in designing highly efficient energy-storage devices.

17.
J Colloid Interface Sci ; 605: 129-137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34311307

RESUMO

Lithium-sulfur (Li-S) batteries are greatly expected to be the favored alternatives in the next-generation energy-storage technologies due to their exceptional advantages. However, the shuttle effect and sluggish reaction kinetics of polysulfides largely hamper the practical success of Li-S batteries. Herein, a unique iron carbide (Fe3C) nanoparticles-embedded porous biomass-derived carbon (Fe3C-PBC) is reported as the excellent immobilizer and promoter for polysulfides regulation. Such a distinctive composite strongly couples the vast active sites of Fe3C nanoparticles and the conductive network of porous biomass-derived carbon. Therefore, Fe3C-PBC is endowed with outstanding adsorptivity and catalytic effect toward inhibiting the shuttle effect and facilitating the redox kinetics of polysulfides, demonstrated by the detailed experimental demonstrations and theoretical calculation. With these synergistic effects, the Fe3C-PBC/S electrode embraces a superb capacity retention of 82.7% at 2C over 500 cycles and an excellent areal capacity of 4.81 mAh cm-2 under the high-sulfur loading of 5.2 mg cm-2. This work will inspire the design of advanced hosts based on biomass materials for polysulfides regulation in pursuing the superior Li-S batteries.


Assuntos
Lítio , Nanopartículas , Biomassa , Carbono , Compostos Inorgânicos de Carbono , Compostos de Ferro , Porosidade , Sulfetos , Enxofre
18.
J Colloid Interface Sci ; 610: 418-426, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929512

RESUMO

Lithium-sulfur (Li-S) batteries with the prominent advantages are greatly expected to be the attractive alternatives in the next-generation energy-storage systems. However, the practical success of Li-S batteries suffers from the shuttle effect and depressed redox kinetics of polysulfides. Herein, for the first time, InOOH nanoparticles are employed as a potent catalytic additive in sulfur electrode to overcome these issues. As demonstrated by the theoretical and experimental results, the strong interactions between the InOOH nanoparticles and sulfur species enable the effective adsorption of polysulfides. More significantly, InOOH nanoparticles not only effectively expedite the reduction of sulfur during the discharge process, but also dramatically accelerate the oxidation of Li2S during the charge process, presenting the marvelous bidirectional catalytic effects. Benefited from these distinctive superiorities, the cells with InOOH nanoparticles harvest an excellent capacity retention of 69.5% over 500 cycles at 2C and a commendable discharge capacity of 891 mAh g-1 under a high-sulfur loading of 5.0 mg cm-2. The detailed investigations in this work provide a novel insight to ameliorate the Li-S electrochemistry by the bidirectional catalyst for high-performance Li-S batteries.

19.
ACS Appl Mater Interfaces ; 13(48): 57654-57663, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841874

RESUMO

Molecular orientation in polymer solar cells (PSCs) is a critical subject of investigation that promotes the quality of bulk heterojunction morphology and power conversion efficiency (PCE). Herein, the intrinsic polymer orientation transition can be found upon delicate control over the branching point position of the irregular alkoxy side chain in difluoroquinoxaline-thiophene-based conjugated polymers. Three polymers with branching points at the third, fourth, and fifth positions away from the backbone were synthesized and abbreviated as PHT3, PHT4, and PHT5, respectively. Temperature-dependent absorption behavior manifests the polymer aggregation ability in the order of PHT3 < PHT4 < PHT5. Surprisingly, the polymer orientation transition from typical face-on to edge-on emerged between PHT4 and PHT5, as evidenced by X-ray-scattering analysis. The enhanced face-on crystallinity of PHT4 endowed the o-xylene-processed PHT4:IT-4Cl-based devices with the highest PCE of 13.40%. For PHT5 with stronger aggregation, the related o-xylene-processed PSCs still showed a good PCE of 12.66%. Our results demonstrate that a delicate polymer orientation transition could be realized through a precisely controlled strategy of the side chain, yielding green-solvent-processed high-performance PSCs.

20.
ACS Appl Mater Interfaces ; 13(29): 34033-34042, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269560

RESUMO

Hydrogen evolution by alternating conjugated copolymers has attracted much attention in recent years. To study alternating copolymers with data-driven strategies, two types of multidimension fragmentation descriptors (MDFD), structure-based MDFD (SMDFD), and electronic property-based MDFD (EPMDFD), have been developed with machine learning (ML) algorithms for the first time. The superiority of SMDFD-based models has been demonstrated by the highly accurate and universal predictions of electronic properties. Moreover, EPMDFD-based, experimental-parameter-free ML models were developed for the prediction of the hydrogen evolution reaction, displaying excellent accuracy (real-test accuracy = 0.91). The combination of explainable ML approaches and first-principles calculations was employed to explore photocatalytic dynamics, revealing the importance of electron delocalization in the excited state. Virtual designing of high-performance candidates can also be achieved. Our work illustrates the huge potential of ML-based material design in the field of polymeric photocatalysts toward high-performance photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...