Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 597: 217043, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876386

RESUMO

HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.

2.
ACS Appl Mater Interfaces ; 14(19): 21954-21965, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35508299

RESUMO

Ovarian cancer is a common gynecologic malignancy with a high fatality rate. Intraperitoneal chemotherapy has been proved as an efficient clinical treatment for disseminated ovarian cancer. However, there are limitations for conventional small molecule drugs to achieve an ideal therapeutic effect. Herein, a synergistic treatment for intraperitoneally disseminated ovarian cancer was achieved by Arg-Gly-Asp (RGD)-modified amorphous calcium phosphate loading with doxorubicin (designated as RGD-CaPO/DOX). The engineered calcium-involved nanomedicine augmented the therapeutic effect of DOX by aggravating endoplasmic reticulum stress, calcium overload, and mitochondrial dysfunction, ultimately triggering mitochondrial apoptosis in the SKOV3 (human ovarian cancer) cell line. In an intraperitoneally disseminated tumor model, RGD modification and the weak negative surface potential of the NPs were beneficial for intraperitoneal retention and tumor targeting. Moreover, intraperitoneal injection of RGD-CaPO/DOX NPs resulted in a favorable antitumor effect. The mean survival time of SKOV3-bearing mice was significantly extended from 29 to 59 days with negligible toxicity. Therefore, this study has been designed to provide an effective chemotherapeutic-augmented treatment for intraperitoneally disseminated ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Cálcio , Fosfatos de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Humanos , Camundongos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos
3.
J Colloid Interface Sci ; 605: 263-273, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34332405

RESUMO

Calcium based biomaterials were widely used for drug delivery application due to their biodegradability, biocompatibility, and high drug loading capacity. Herein, amino-capped polyamidoamine (PAMAM) dendrimer was applied as a macromolecular template to form amino-modified calcium phosphate hollow sphere (CaPO-NH2). After loading with 5-fluorouracil (5Fu), this system performed synergistic cancer chemotherapy. In this study, the 5Fu/CaPO-NH2 particles could be efficiently uptaken by cancer cells, and then decompose into Ca2+ and release 5Fu drug in the cytoplasm; therefore calcium overload and reactive oxygen species (ROS) accumulation were found in PSN1 cells that could induce cell membrane damage and elicit cell apoptosis through a series of biochemical reactions including endoplasmic reticulum stress, lipid peroxidation and mitochondrial apoptosis. In the PSN1 pancreatic cancer xenograft model, the 5Fu/CaPO-NH2 system performed high tumor inhibition via chemotherapy and calcium overload induced apoptosis. Comparingly, the normal cells and organs were insensitive to this synergistic therapy, which indicated the well biocompatibility of delivery system. Thus, this study provided a promising CaPO-NH2 drug delivery platform for enhanced 5Fu chemotherapeutic effect.


Assuntos
Fluoruracila , Neoplasias Pancreáticas , Apoptose , Fosfatos de Cálcio , Linhagem Celular Tumoral , Portadores de Fármacos , Fluoruracila/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico
4.
Aging (Albany NY) ; 13(4): 5197-5225, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535187

RESUMO

In the process of epithelial-mesenchymal transition (EMT), epithelial cancer cells transdifferentiate into mesenchymal-like cells with high motility and aggressiveness, resulting in the spread of tumor cells. Immune cells and inflammation in the tumor microenvironment are the driving factors of EMT, but few studies have explored the core targets of the interaction between EMT and tumor immune cells. We analyzed thousands of cases of gastric cancer and gastric tissue specimens of TCGA, CPTAC, GTEx and analyzing QPCR and IHC data of 56 gastric cancer patients in SYSU Gastric Cancer Research Center. It was known that EMT has an important connection with the infiltration of NK cells, and that the expression of vinculin may be the target of the phenomenon. The increased expression of vinculin is closely related to the aggressiveness and distant metastasis of cancer, which affects the survival prognosis of the patient. Moreover, through in vitro experiments under 3D conditions, we found that vinculin, cell invasion and metastasis are clearly linked. VCL can affect EMT and tumor immunity by regulating EPCAM gene expression. The role and mechanism of action of vinculin have been controversial, but this molecule may downregulate EpCAM (epithelial cellular adhesion molecule) and its own role in gastric cancer through DNA methylation, causing NK cells to enrich into tumor cells and kill tumor cells. At the same time, it promotes the occurrence of EMT, which in turn causes tumor metastasis and thus poorer prognosis.


Assuntos
Adenocarcinoma/genética , Transição Epitelial-Mesenquimal/genética , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Gástricas/genética , Vinculina/genética , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Molécula de Adesão da Célula Epitelial/metabolismo , Transição Epitelial-Mesenquimal/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica , Prognóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Vinculina/metabolismo
5.
Front Pharmacol ; 10: 1355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866858

RESUMO

Alzheimer disease (AD) is characterized as a chronic neurodegenerative disease associated with aging. The clinical manifestations of AD include latent episodes of memory and cognitive impairment, psychiatric symptoms and behavioral disorders, as well as limited activities in daily life. In developed countries, AD is now acknowledged as the third leading cause of death, following cardiovascular disease and cancer. The pathogenesis and mechanism of AD remain unclear, although some theories have been proposed to explain AD, such as the theory of ß-amyloid, the theory of the abnormal metabolism of tau protein, the theory of free radical damage, the theory of the inflammatory response, the theory of cholinergic damage, etc. Effective methods to predict, prevent or reverse AD are unavailable, and thus the development of new, efficient therapeutic drugs has become a current research hot spot worldwide. The isolation and extraction of active components from natural drugs have great potential in treating AD. These drugs possess the advantages of multiple targets in multiple pathways, fewer side effects and a long duration of curative effects. This article summaries the latest research progress regarding the mechanisms of natural drugs in the treatment of AD, providing a review of the literature and a theoretical basis for improving the clinical treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...