Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(32): 26972-26981, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29986134

RESUMO

Lithium metal anodes can largely enhance the energy density of rechargeable batteries because of the high theoretical capacity and the high negative potential. However, the problem of lithium dendrite formation and low Coulombic efficiency (CE) during electrochemical cycling must be solved before lithium anodes can be widely deployed. Herein, a new atomic layer deposition (ALD) chemistry to realize the low-temperature synthesis of homogeneous and stoichiometric lithium fluoride (LiF) is reported, which then for the first time, as far as we know, is deposited directly onto lithium metal. The LiF preparation is performed at 150 °C yielding 0.8 Å/cycle. The LiF films are found to be crystalline, highly conformal, and stoichiometric with purity levels >99%. Nanoindentation measurements demonstrate the LiF achieving a shear modulus of 58 GPa, 7 times higher than the sufficient value to resist lithium dendrites. When used as the protective coating on lithium, it enables a stable Coulombic efficiency as high as 99.5% for over 170 cycles, about 4 times longer than that of bare lithium anodes. The remarkable battery performance is attributed to the nanosized LiF that serves two critical functions simultaneously: (1) the high dielectric value creates a uniform current distribution for excellent lithium stripping/plating and ultrahigh mechanical strength to suppress lithium dendrites; (2) the great stability and electrolyte isolation by the pure LiF on lithium prevents parasitic reactions for a much improved CE. This new ALD chemistry for conformal LiF not only offers a promising avenue to implement lithium metal anodes for high-capacity batteries but also paves the way for future studies to investigate failure and evolution mechanisms of solid electrolyte interphase (SEI) using our LiF on anodes such as graphite, silicon, and lithium.

2.
Nature ; 554(7693): 500-504, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29469093

RESUMO

Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS2 memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS2 defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could enable complex neuromorphic learning and the study of the physics of defect kinetics in two-dimensional materials.

3.
Nat Chem ; 9(5): 466-472, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28430197

RESUMO

Two-dimensional covalent organic frameworks often π stack into crystalline solids that allow precise spatial positioning of molecular building blocks. Inspired by the hydrogen-bonded G-quadruplexes found frequently in guanine-rich DNA, here we show that this structural motif can be exploited to guide the self-assembly of naphthalene diimide and perylene diimide electron acceptors end-capped with two guanine electron donors into crystalline G-quadruplex-based organic frameworks, wherein the electron donors and acceptors form ordered, segregated π-stacked arrays. Time-resolved optical and electron paramagnetic resonance spectroscopies show that photogenerated holes and electrons in the frameworks have long lifetimes and display recombination kinetics typical of dissociated charge carriers. Moreover, the reduced acceptors form polarons in which the electron is shared over several molecules. The G-quadruplex frameworks also demonstrate potential as cathode materials in Li-ion batteries because of the favourable electron- and Li-ion-transporting capacity provided by the ordered rylene diimide arrays and G-quadruplex structures, respectively.

4.
Nano Lett ; 17(4): 2539-2546, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28240911

RESUMO

Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

5.
Adv Mater ; 29(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27813243

RESUMO

Nanopatterning and layer-by-layer thinning of black phosphorus is demonstrated with conductive atomic-force-microscope anodic oxidation. The liquid-phase patterning byproduct is readily removed by water rinsing. An alternating-current bias enables direct nanopatterning and thinning on insulating substrates such as SiO2 /Si. Field-effect transistors with patterned channels show significant improvements in current modulation by up to a factor of 50.

6.
Nano Lett ; 16(11): 7121-7127, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27726404

RESUMO

This paper describes how delamination-free, hierarchical patterning of graphene can be achieved on prestrained thermoplastic sheets by surface wrinkling. Conformal contact between graphene and the substrate during strain relief was maintained by the presence of a soft skin layer, resulting in the uniform patterning of three-dimensional wrinkles over large areas (>cm2). The graphene wrinkle wavelength was tuned from the microscale to the nanoscale by controlling the thickness of the skin layer with 1 nm accuracy to realize a degree of control not possible by crumpling, which relies on delamination. Hierarchical patterning of the skin layers with varying thicknesses enabled multiscale graphene wrinkles with predetermined orientations to be formed. Significantly, hierarchical graphene wrinkles exhibited tunable mechanical stiffness at the nanoscale without compromising the macroscale electrical conductivity.

7.
ACS Appl Mater Interfaces ; 8(31): 19979-86, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27419860

RESUMO

Oxide conversion reactions in lithium ion batteries are challenged by substantial irreversibility associated with significant volume change during the phase separation of an oxide into lithia and metal species (e.g., NiO + 2Li(+) + 2e(-) → Ni + Li2O). We demonstrate that the confinement of nanometer-scale NiO layers within a Ni/NiO multilayer electrode can direct lithium transport and reactivity, leading to coherent expansion of the multilayer. The morphological changes accompanying lithiation were tracked in real-time by in-operando X-ray reflectivity (XRR) and ex-situ cross-sectional transmission electron microscopy on well-defined periodic Ni/NiO multilayers grown by pulsed-laser deposition. Comparison of pristine and lithiated structures reveals that the nm-thick nickel layers help initiate the conversion process at the interface and then provide an architecture that confines the lithiation to the individual oxide layers. XRR data reveal that the lithiation process starts at the top and progressed through the electrode stack, layer by layer resulting in a purely vertical expansion. Longer term cycling showed significant reversible capacity (∼800 mA h g(-1) after ∼100 cycles), which we attribute to a combination of the intrinsic bulk lithiation capacity of the NiO and additional interfacial lithiation capacity. These observations provide new insight into the role of metal/metal oxide interfaces in controlling lithium ion conversion reactions by defining the relationships between morphological changes and film architecture during reaction.

8.
Nano Lett ; 16(1): 497-503, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26651229

RESUMO

The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of "all 2D" van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p-n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.

9.
Nano Lett ; 15(10): 7029-36, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26348822

RESUMO

Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10(-9) A/cm(2) at 2 MV/cm and high capacitances of 245 nF/cm(2). The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm(2) V(-1) s(-1) at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics.


Assuntos
Compostos de Boro/química , Nanoestruturas , Microscopia Eletrônica de Transmissão , Soluções
10.
J Phys Chem Lett ; 6(5): 773-8, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26262651

RESUMO

With a semiconducting band gap and high charge carrier mobility, two-dimensional (2D) black phosphorus (BP)­often referred to as phosphorene­holds significant promise for next generation electronics and optoelectronics. However, as a 2D material, it possesses a higher surface area to volume ratio than bulk BP, suggesting that its chemical and thermal stability will be modified. Herein, an atomic-scale microscopic and spectroscopic study is performed to characterize the thermal degradation of mechanically exfoliated 2D BP. From in situ scanning/transmission electron microscopy, decomposition of 2D BP is observed to occur at ∼400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature. This decomposition initiates via eye-shaped cracks along the [001] direction and then continues until only a thin, amorphous red phosphorus like skeleton remains. In situ electron energy loss spectroscopy, energy-dispersive X-ray spectroscopy, and energy-loss near-edge structure changes provide quantitative insight into this chemical transformation process.


Assuntos
Nanoestruturas/química , Fósforo/química , Propriedades de Superfície
11.
Nat Nanotechnol ; 10(5): 403-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849785

RESUMO

Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ∼10(3) and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.

12.
Nano Lett ; 15(4): 2278-84, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25807012

RESUMO

The thickness-dependent band structure of MoS2 implies that discontinuities in energy bands exist at the interface of monolayer (1L) and multilayer (ML) thin films. The characteristics of such heterojunctions are analyzed here using current versus voltage measurements, scanning photocurrent microscopy, and finite element simulations of charge carrier transport. Rectifying I-V curves are consistently observed between contacts on opposite sides of 1L/ML junctions, and a strong bias-dependent photocurrent is observed at the junction. Finite element device simulations with varying carrier concentrations and electron affinities show that a type II band alignment at single layer/multilayer junctions reproduces both the rectifying electrical characteristics and the photocurrent response under bias. However, the zero-bias junction photocurrent and its energy dependence are not explained by conventional photovoltaic and photothermoelectric mechanisms, indicating the contributions of hot carriers.

13.
ACS Nano ; 9(4): 3596-604, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25785299

RESUMO

Solution dispersions of two-dimensional (2D) black phosphorus (BP)--often referred to as phosphorene--are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous organic solvents in a sealed-tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated O2 or H2O. Among conventional solvents, N-methylpyrrolidone (NMP) is found to provide stable, highly concentrated (∼0.4 mg/mL) BP dispersions. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy show that the structure and chemistry of solvent-exfoliated BP nanosheets are comparable to mechanically exfoliated BP flakes. Additionally, residual NMP from the liquid-phase processing suppresses the rate of BP oxidation in ambient conditions. Solvent-exfoliated BP nanosheet field-effect transistors exhibit ambipolar behavior with current on/off ratios and mobilities up to ∼10(4) and ∼50 cm(2) V(-1) s(-1), respectively. Overall, this study shows that stable, highly concentrated, electronic-grade 2D BP dispersions can be realized by scalable solvent exfoliation, thereby presenting opportunities for large-area, high-performance BP device applications.

14.
Nano Lett ; 14(12): 6964-70, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25380142

RESUMO

Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on H-Si(111) versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 h in ambient, followed by a ∼ 10(3) decrease in FET current on/off ratio and mobility after 48 h. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ∼ 10(3) and mobilities of ∼ 100 cm(2) V(-1) s(-1) for over 2 weeks in ambient conditions. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications.

15.
ACS Nano ; 8(10): 10551-8, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25223821

RESUMO

Ultrathin transition metal dichalcogenides (TMDCs) of Mo and W show great potential for digital electronics and optoelectronic applications. Whereas early studies were limited to mechanically exfoliated flakes, the large-area synthesis of 2D TMDCs has now been realized by chemical vapor deposition (CVD) based on a sulfurization reaction. The optoelectronic properties of CVD grown monolayer MoS2 have been intensively investigated, but the influence of stoichiometry on the electrical and optical properties has been largely overlooked. Here we systematically vary the stoichiometry of monolayer MoS2 during CVD via controlled sulfurization and investigate the associated changes in photoluminescence and electrical properties. X-ray photoelectron spectroscopy is employed to measure relative variations in stoichiometry and the persistence of MoOx species. As MoS2-δ is reduced (increasing δ), the field-effect mobility of monolayer transistors increases while the photoluminescence yield becomes nonuniform. Devices fabricated from monolayers with the lowest sulfur content have negligible hysteresis and a threshold voltage of ∼ 0 V. We conclude that the electrical and optical properties of monolayer MoS2 crystals can be tuned via stoichiometry engineering to meet the requirements of various applications.


Assuntos
Dissulfetos/química , Molibdênio/química , Espectroscopia Fotoeletrônica , Análise Espectral Raman
16.
J Biomed Biotechnol ; 2012: 492730, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496610

RESUMO

Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs), is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead) target DNA in the presence of 36 µM nontarget (noncomplementary) DNA (<10 ppm target DNA) using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC) diagnostics and subsequent medical care.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/análise , Magnetometria/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de DNA/química , DNA de Cadeia Simples/química , Desenho de Equipamento , Óxido Ferroso-Férrico/química , Limite de Detecção , Microscopia/instrumentação , Microscopia/métodos , Microesferas , Microtecnologia/instrumentação
17.
Biosens Bioelectron ; 26(11): 4538-44, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21652197

RESUMO

Real-time label-free electrical detection of proteins, including cardiac troponin (cTn), is demonstrated using functionalized SnO2 nanobelt field-effect transistors (FETs) with integrated microfluidics. Selective biomolecular functionalization of the active SnO2 nanobelt channel and effective passivation of the substrate surface were realized and verified through fluorescence microscopy. The validation/verification of the sensing scheme was initially demonstrated via detection of biotin-streptavidin binding: devices with single biotinylated SnO2 nanobelts showed pronounced conductance changes in response to streptavidin binding. Importantly, the pH-dependence of the conductance changes was fully consistent with the charged states of streptavidin at different pH. Moreover, the specificity of the sensors' electrical responses was confirmed by co-labeling with quantum dots. Finally, the sensing platform was successfully applied for detection of the cardiac troponin I (cTnI) subunit within cTn, a clinically important protein marker for myocardial infarction.


Assuntos
Técnicas Biossensoriais/instrumentação , Troponina I/análise , Animais , Anticorpos Imobilizados , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Biotina , Bovinos , Desenho de Equipamento , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Miocárdio/química , Ligação Proteica , Soroalbumina Bovina/análise , Estreptavidina , Compostos de Estanho , Transistores Eletrônicos , Tropomiosina/análise , Troponina I/imunologia
18.
Nanotechnology ; 20(35): 355501, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19671978

RESUMO

The detection of reagent-free specific biomolecular interactions through sensing of nanoscopic magnetic labels provides one of the most promising routes to biosensing with solid-state devices. In particular, Hall sensors based on semiconductor heterostructures have shown exceptional magnetic moment sensitivity over a large dynamic field range suitable for magnetic biosensing using superparamagnetic labels. Here we demonstrate the capability of such micro-Hall sensors to detect specific molecular binding using biotin-streptavidin as a model system. We apply dip-pen nanolithography to selectively biotinylate the active areas of InAs micro-Hall devices with nanoscale precision. Specific binding of complementarily functionalized streptavidin-coated superparamagnetic beads to the Hall crosses occurs via molecular recognition, and magnetic detection of the assembled beads is achieved at room temperature using phase sensitive micro-Hall magnetometry. The experiment constitutes the first unambiguous demonstration of magnetic detection of specific biomolecular interactions with semiconductor micro-Hall sensors, and the selective molecular functionalization and resulting localized bead assembly demonstrate the possibility of multiplexed sensing of multiple target molecules using a single device with an array of micro-Hall sensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Biotina/metabolismo , Magnetismo/instrumentação , Microesferas , Estreptavidina/metabolismo , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...