Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(28): 10045-10053, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35792073

RESUMO

The phosphonate group is a key pharmacophore in many antiviral, antimicrobial, and antineoplastic drugs. Due to its high polarity and short retention time, detecting and quantifying such phosphonate-containing drugs with LC/MS-based methods are challenging and require derivatization with hazardous reagents. Given the emerging importance of phosphonate-containing drugs, developing a practical, accessible, and safe method for their quantitation in pharmacokinetics (PK) studies is desirable. NMR-based methods are often employed in drug discovery but are seldom used for compound quantitation in PK studies. Here, we show that proton-phosphorous (1H-31P) heteronuclear single quantum correlation (HSQC) NMR allows for the quantitation of the phosphonate-containing enolase inhibitor HEX in plasma and tissues at micromolar concentrations. Although mice were shown to rapidly clear HEX from circulation (over 95% in <1 h), the plasma half-life of HEX was more than 1 h in rats and nonhuman primates. This slower clearance rate affords a significantly higher exposure of HEX in rat models compared to that in mouse models while maintaining a favorable safety profile. Similar results were observed for the phosphonate-containing antibiotic, fosfomycin. Our study demonstrates the applicability of the 1H-31P HSQC method to quantify phosphonate-containing drugs in complex biological samples and illustrates an important limitation of mice as preclinical model species for phosphonate-containing drugs.


Assuntos
Antineoplásicos , Organofosfonatos , Animais , Antineoplásicos/farmacocinética , Antivirais , Camundongos , Organofosfonatos/química , Primatas , Prótons , Ratos
2.
BMC Cardiovasc Disord ; 21(1): 475, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600481

RESUMO

BACKGROUND: HSCR, a colonic neurocristopathy affecting 1/5000 births, is suggested to associate with cardiac septal defects and conotruncal malformations. However, we question subtle cardiac changes maybe more commonly present due to multi-regulations by HSCR candidate genes, in this instance, ETB. To investigate, we compared the cardiac morphology and quantitative measurements of sl/sl rat to those of the control group. METHODS: Eleven neonatal rats were generated from heterozygote (ETB+/-) crossbreeding. Age and bodyweight were recorded at time of sacrifice. Diffusion-staining protocols with 1.5% iodine solution was completed prior to micro-CT scanning. All rats were scanned using an in vivo micro-CT scanner, Caliper Quantum FX, followed by two quality-control scans using a custom-built ex vivo micro-CT system. All scans were reviewed for gross cardiac dysmorphology. Micro-CT data were segmented semi-automatically post-NLM filtering for: whole-heart, LV, RV, LA, RA, and aortic arch. Measurements were taken with Drishti. Following image analysis, PCR genotyping of rats was performed: five sl/sl rats, three wildtype, and three heterozygotes. Statistical comparisons on organ volume, growth rate, and organ volume/bodyweight ratios were made between sl/sl and the control group. RESULTS: Cardiac morphology and constituents were preserved. However, significant volumetric reductions were recorded in sl/sl rats with respect to the control: whole heart (38.70%, p value = 0.02); LV (41.22%, p value = 0.01), RV (46.15%, p value = 0.02), LA (44.93%, p value = 0.06), and RA (39.49%, p value = 0.02). Consistent trend was observed in growth rate (~ 20%) and organ-volume/bodyweight ratios (~ 25%). On the contrary, measurements on aortic arch demonstrated no significant difference among the two groups. CONCLUSION: Despite the presence of normal morphology, significant cardiac growth retardation was detected in sl/sl rat, supporting the likely association of cardiac anomalies with HSCR, at least in ETB-/- subtype. Structural reduction was likely due to a combination of failure to thrive from enteric dysfunction, alterations to CaNCC colonization, and importantly coronary hypoperfusion from elevated ET-1/ETA-mediated hypervasoconstriction. Little correlation was detected between aortic arch development and sl/sl rat, supporting minor ETB role in large vessels. Although further clinical study is warranted, HSCR patients may likely require cardiac assessment in view of potential congenital cardiac defects.


Assuntos
Cardiopatias Congênitas/genética , Coração/crescimento & desenvolvimento , Doença de Hirschsprung/genética , Receptor de Endotelina B/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Predisposição Genética para Doença , Coração/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/fisiopatologia , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/fisiopatologia , Mutação , Miocárdio/patologia , Ratos Transgênicos , Receptor de Endotelina B/metabolismo , Aumento de Peso , Microtomografia por Raio-X
3.
Nat Commun ; 12(1): 4228, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244484

RESUMO

Homozygous deletion of methylthioadenosine phosphorylase (MTAP) in cancers such as glioblastoma represents a potentially targetable vulnerability. Homozygous MTAP-deleted cell lines in culture show elevation of MTAP's substrate metabolite, methylthioadenosine (MTA). High levels of MTA inhibit protein arginine methyltransferase 5 (PRMT5), which sensitizes MTAP-deleted cells to PRMT5 and methionine adenosyltransferase 2A (MAT2A) inhibition. While this concept has been extensively corroborated in vitro, the clinical relevance relies on exhibiting significant MTA accumulation in human glioblastoma. In this work, using comprehensive metabolomic profiling, we show that MTA secreted by MTAP-deleted cells in vitro results in high levels of extracellular MTA. We further demonstrate that homozygous MTAP-deleted primary glioblastoma tumors do not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma. These findings highlight metabolic discrepancies between in vitro models and primary human tumors that must be considered when developing strategies for precision therapies targeting glioblastoma with homozygous MTAP deletion.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Desoxiadenosinas/metabolismo , Glioblastoma/genética , Purina-Núcleosídeo Fosforilase/deficiência , Tionucleosídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Desoxiadenosinas/análise , Feminino , Secções Congeladas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Homozigoto , Humanos , Metabolômica , Metionina Adenosiltransferase/metabolismo , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Deleção de Sequência , Tionucleosídeos/análise , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Discov ; 10(9): 1374-1387, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32385075

RESUMO

Genetic inactivation of PTEN is common in prostate cancer and correlates with poorer prognosis. We previously identified CHD1 as an essential gene in PTEN-deficient cancer cells. Here, we sought definitive in vivo genetic evidence for, and mechanistic understanding of, the essential role of CHD1 in PTEN-deficient prostate cancer. In Pten and Pten/Smad4 genetically engineered mouse models, prostate-specific deletion of Chd1 resulted in markedly delayed tumor progression and prolonged survival. Chd1 deletion was associated with profound tumor microenvironment (TME) remodeling characterized by reduced myeloid-derived suppressor cells (MDSC) and increased CD8+ T cells. Further analysis identified IL6 as a key transcriptional target of CHD1, which plays a major role in recruitment of immunosuppressive MDSCs. Given the prominent role of MDSCs in suppressing responsiveness to immune checkpoint inhibitors (ICI), our genetic and tumor biological findings support combined testing of anti-IL6 and ICI therapies, specifically in PTEN-deficient prostate cancer. SIGNIFICANCE: We demonstrate a critical role of CHD1 in MDSC recruitment and discover CHD1/IL6 as a major regulator of the immunosuppressive TME of PTEN-deficient prostate cancer. Pharmacologic inhibition of IL6 in combination with immune checkpoint blockade elicits robust antitumor responses in prostate cancer.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Proteínas de Ligação a DNA/metabolismo , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Evasão Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Camundongos Transgênicos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteína Smad4/genética , Microambiente Tumoral/genética
5.
Anal Chim Acta ; 1100: 75-87, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987155

RESUMO

Mass spectrometry imaging (MSI) using the ambient ionization technique enables a direct chemical investigation of biological samples with minimal sample pretreatment. However, detailed morphological information of the sample is often lost due to its limited spatial resolution. In this study, predictive high-resolution molecular imaging was produced by the fusion of ambient ionization MSI with optical microscopy of routine hematoxylin and eosin (H&E) staining. Specifically, desorption electrospray ionization (DESI) and nanospray desorption electrospray ionization (nanoDESI) mass spectrometry were employed to visualize lipid and protein species on mice tissue sections. The resulting molecular distributions obtained by ambient ionization MSI-microscopy fusion were verified with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MSI and immunohistochemistry (IHC) staining. Label-free molecular imaging with 5-µm spatial resolution can be acquired using DESI and nanoDESI, whereas the typical spatial resolution of ambient ionization MSI was ∼100 µm. In this regard, sharpened molecular histology of tissue sections was achieved, providing complementary references to the pathology. Such a multi-modal integration enables the discovery of potential tumor biomarkers. After image fusion, more than a dozen potential biomarkers on a metastatic mouse lung tissue section and Luminal B breast tumor tissue section were identified.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico por imagem , Lipídeos/análise , Neoplasias Pulmonares/diagnóstico por imagem , Proteínas de Neoplasias/análise , Imagem Óptica , Animais , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos ICR , Espectrometria de Massas por Ionização por Electrospray
6.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8549, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31411772

RESUMO

RATIONALE: Natural products have been great sources for drug discovery. However, the structures of natural products are diverse and difficult to elucidate. Cordyceps militaris is a parasitic fungus which usually grows on host insects. The metabolites of C. militaris have been reported to act as chemotherapeutic agents. In this study, we aimed for the structural elucidation of specialized metabolites derived from C. militaris, and the metabolic impact in leukemia cells. METHODS: We describe a liquid chromatography data-dependent mass spectrometric platform combining tandem mass analysis and molecular networking. Leukemia cells treated with C. militaris extract and control groups were visualized in terms of their metabolic profiles using Global Natural Product Social (GNPS) molecular networking. By this method, we were able to elucidate the structures of metabolites from medicinal fungus extracts and cancer cells and then to recognize their changes in a semi-quantitative manner. RESULTS: Using C. militaris and leukemia cells as examples, we found that approximately 100 new ion species were present in the treated leukemia cells, suggesting a highly altered metabolic profile. Specifically, based on the tandem mass spectral similarity, we proposed that cordycepin, a key fungus-derived therapeutic agent known for its antitumor activity, was transformed into its methylthio form in leukemia cells. CONCLUSIONS: The platform described provides an ability to investigate complex molecular interactions of natural products in mammalian cells. By incorporating tandem mass spectrometry and molecular networking, we were able to reveal the chemical modification of crude bioactive compounds, for example potential bioactive compounds which might be modified from cordycepin. We envision that such a mass spectrometry (MS)-based workflow, combined with other metabolomics platforms, would enable much wider applicability to cell biology and be of great potential to pharmacological study as well as drug discovery.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Cordyceps/química , Leucemia/tratamento farmacológico , Metaboloma/efeitos dos fármacos , Antineoplásicos/química , Produtos Biológicos/química , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Leucemia/metabolismo , Espectrometria de Massas em Tandem
7.
J Biomed Sci ; 26(1): 35, 2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31078138

RESUMO

Extracellular vesicle (EV)-mediated intercellular communication acts as a critical culprit in cancer development. The selective packaging of oncogenic molecules renders tumor-derived EVs capable of altering the tumor microenvironment and thereby modulating cancer developments that may contribute to drug resistance and cancer recurrence. Moreover, the molecular and functional characteristics of cancer through its development and posttreatment evolve over time. Tumor-derived EVs are profoundly involved in this process and can, therefore, provide valuable real-time information to reflect dynamic changes occurring within the body. Because they bear unique molecular profiles or signatures, tumor-derived EVs have been highlighted as valuable diagnostic and predictive biomarkers as well as novel therapeutic targets. In addition, the use of an advanced EV-based drug delivery system for cancer therapeutics has recently been emphasized in both basic and clinical studies. In this review, we highlight comprehensive aspects of tumor-derived EVs in oncogenic processes and their potential clinical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/fisiologia , Neoplasias/terapia , Oncogenes/fisiologia , Microambiente Tumoral , Comunicação Celular/fisiologia , Humanos
8.
Front Neuroanat ; 13: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842729

RESUMO

Connective tissue growth factor (CTGF) is a secreted extracellular matrix-associated protein, which play a role in regulating various cellular functions. Although the expression of CTGF has been reported in the cortical subplate, its function is still not clear. Thus, to explore the significance of CTGF in the brain, we created a forebrain-specific Ctgf knockout (FbCtgf KO) mouse model. By crossing Ctgf fl/fl mice with Emx1-Cre transgenic mice, in which the expression of Cre is prenatally initiated, the full length Ctgf is removed in the forebrain structures. In young adult (2-3 months old) FbCtgf KO mice, subplate markers such as Nurr1 and Cplx3 are still expressed in the cortical layer VIb; however, the density of the subplate neurons is increased. Interestingly, in these mutants, we found a reduced structural complexity in the subplate neurons. The distribution patterns of neurons and glial cells, examined by immunohistochemistry, are comparable between genotypes in the somatosensory cortex. However, increased densities of mature oligodendrocytes, but not immature ones, were noticed in the external capsule underneath the cortical layer VIb in young adult FbCtgf KO mice. The features of myelinated axons in the external capsule were then examined using electron microscopy. Unexpectedly, the thickness of the myelin sheath was reduced in middle-aged (>12 months old), but not young adult FbCtgf KO mice. Our results suggest a secretory function of the subplate neurons, through the release of CTGF, which regulates the density and dendritic branching of subplate neurons as well as the maturation and function of nearby oligodendrocytes in the white matter.

9.
Cancer Sci ; 109(8): 2364-2374, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29908100

RESUMO

Exosomes participate in cancer progression and metastasis by transferring bioactive molecules between cancer and various cells in the local and distant microenvironments. Such intercellular cross-talk results in changes in multiple cellular and biological functions in recipient cells. Several hallmarks of cancer have reportedly been impacted by this exosome-mediated cell-to-cell communication, including modulating immune responses, reprogramming stromal cells, remodeling the architecture of the extracellular matrix, or even endowing cancer cells with characteristics of drug resistance. Selectively, loading specific oncogenic molecules into exosomes highlights exosomes as potential diagnostic biomarkers as well as therapeutic targets. In addition, exosome-based drug delivery strategies in preclinical and clinical trials have been shown to dramatically decrease cancer development. In the present review, we summarize the significant aspects of exosomes in cancer development that can provide novel strategies for potential clinical applications.


Assuntos
Carcinogênese/patologia , Exossomos/patologia , Neoplasias/patologia , Biomarcadores Tumorais/metabolismo , Comunicação Celular/fisiologia , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/metabolismo
10.
PLoS One ; 11(9): e0163617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27658202

RESUMO

Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. The molecular mechanisms underlying the regulation of Grb7 remain unclear. Here, we revealed a novel negative post-translational regulation of Grb7 by the peptidyl-prolyl cis/trans isomerase, Pin1. Our data show that phosphorylation of Grb7 protein on the Ser194-Pro motif by c-Jun N-terminal kinase facilitates its binding with the WW domain of Pin1. Subsequently, Grb7 is degraded by the ubiquitin- and proteasome-dependent proteolytic pathway. Indeed, we found that Pin1 exerts its peptidyl-prolyl cis/trans isomerase activity in the modulation of Grb7 protein stability in regulation of cell cycle progression at the G2-M phase. This study illustrates a novel regulatory mechanism in modulating Grb7-mediated signaling, which may take part in pathophysiological consequences.

11.
Postgrad Med J ; 92(1092): 611-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27519916

RESUMO

OBJECTIVE: To explore the diagnostic accuracy of acute appendicitis among different patient groups and evaluate the statistical diagnostic values of common pathology and imaging tests for the diagnosis of acute appendicitis. MAIN MEASURES: Proportions of histology-proven appendicitis in different patient groups. Statistical parameters including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (+LR), negative likelihood ratio (-LR) and diagnostic odds ratio (DOR) between the histology-proven appendicitis and abnormal results of U/S, CT, WCC, CRP, bilirubin, pancreatic, and combined test results of WCC and CRP. RESULTS: Our data showed that up to 25.7% of patients underwent appendectomy has normal appendix. Appendicitis is often accurately diagnosed among male patients, up to 90.3% of the time, while misdiagnosis of appendicitis among young females (<40 years old) is significantly high, up to 30.9%. CT has high diagnostic performance index for appendicitis, sensitivity > 90%, and no individual pathology test out of those examined can rival the sensitivity of CT. Nevertheless, by examining the combined results of WCC and CRP, we found that abnormal results in one or both these yields sensitivity similar to CT scans in detecting acute appendicitis, up to 95%. CONCLUSION: Young female patients have highest risk of being falsely diagnosed with acute appendicitis and hence unnecessary surgery. Bilirubin and lipase exhibit no correlations with acute appendicitis. Combined interpretation of WCC or CRP abnormal results yields competitive sensitivity as CT. Hencewe would suggest that, under the appropriate clinical context, one can use both WCC and CRP as a simple tool to support the diagnosis of appendicitis. If both tests show normal results, we would highly recommend considering alternative diagnosis.


Assuntos
Apendicite/diagnóstico por imagem , Erros de Diagnóstico , Tomografia Computadorizada por Raios X , Ultrassonografia , Adulto , Fatores Etários , Apendicectomia , Apendicite/metabolismo , Apendicite/patologia , Apendicite/cirurgia , Bilirrubina/metabolismo , Proteína C-Reativa/metabolismo , Feminino , Humanos , Contagem de Leucócitos , Lipase/metabolismo , Masculino , Pessoa de Meia-Idade , Razão de Chances , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Fatores Sexuais , Adulto Jovem
12.
BMC Complement Altern Med ; 16(1): 310, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553852

RESUMO

BACKGROUND: A newly defined Cordyceps species, Ophiocordyceps formosana (O. formosana) has been implicated in multitudinous bioactivities, including lowering glucose and cholesterol levels and modulating the immune system. However, few literatures demonstrate sufficient evidence to support these proposed functions. Although the use of Cordyceps spp. has been previously addressed to improve insulin insensitivity and improve the detrimental symptoms of depression; its mechanistic nature remains unsettled. Herein, we reveal the effects of O. formosana in ameliorating hyperglycemia accompanied with depression. METHODS: Diabetes was induced in mice by employing streptozotocin(STZ), a chemical that is toxic to insulin-producing ß cells of the pancreas. These streptozotocin (STZ)-induced diabetic mice showed combined symptoms of hyperglycemia and depressive behaviors. Twenty-four STZ-induced mice were randomly divided into 3 groups subjected to oral gavage with 100 µL solution of either PBS or 25 mg/mL Ophiocordyceps formosana extract (OFE) or 2 mg/mL rosiglitazone (Rosi, positive control group). Treatments were administered once per day for 28 days. An additional 6 mice without STZ induction were treated with PBS to serve as the control group. Insulin sensitivity was measured by a glucose tolerance test and levels of adiponectin in plasma and adipose tissue were also quantified. Behavioral tests were conducted and levels of monoamines in various brain regions relating to depression were evaluated. RESULTS: HPLC analysis uncovered three major constituents, adenosine, D-mannitol and cordycepin, within O. formosana similar to other prestigious medicinal Cordyceps spp.. STZ-induced diabetic mice demonstrated decreased body weight and subcutaneous adipose tissue, while these symptoms were recovered in mice receiving OFE treatment. Moreover, the OFE group displayed improved insulin sensitivity and elevated adiponectin within the plasma and adipose tissue. The anti-depressive effect of OFE was observed in various depression-related behavior tests. Concurrently, neurotransmitters, like 5-HT and dopamine in the frontal cortex, striatum and hippocampus were found to be up-regulated in OFE-treated mice. CONCLUSIONS: Our findings illustrated, for the first time, the medicinal merits of O. formosana on Type I diabetes and hyperglycemia-induced depression. OFE were found to promote the expression of adiponectin, which is an adipokine involved in insulin sensitivity and hold anti-depressive effects. In addition, OFE administration also displayed altered levels of neurotransmitters in certain brain regions that may have contributed to its anti-depressive effect. Collectively, this current study provided insights to the potential therapeutic effects of O. formosana extracts in regards to hyperglycemia and its depressive complications.


Assuntos
Comportamento Animal/efeitos dos fármacos , Produtos Biológicos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental , Hiperglicemia/sangue , Hypocreales/química , Adiponectina , Animais , Peso Corporal/efeitos dos fármacos , Depressão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...