Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764624

RESUMO

The 29th International Conference on Amorphous and Nanocrystalline Semiconductors served as a continuation of the biennial conference that has been held since 1965 [...].

2.
Opt Express ; 31(19): 30570-30577, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710597

RESUMO

Efficient and stable near-infrared silicon-based light source is a challenge for future optoelectronic integration and interconnection. In this paper, alkaline earth metal Ca2+ doped SiO2-SnO2: Er3+ films were prepared by sol-gel method. The oxygen vacancies introduced by the doped Ca2+ significantly increase the near-infrared luminescence intensity of Er3+ ions. It was found that the doping concentration of Sn precursors not only modulate the crystallinity of SnO2 nanocrystals but also enhance the luminescence performance of Er3+ ions. The stable electroluminescent devices based on SiO2-SnO2: Er3+/Ca2+ films exhibit the power efficiency as high as 1.04×10-2 with the external quantum efficiency exceeding 10%.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630946

RESUMO

Inspired by its highly efficient capability to deal with big data, the brain-like computational system has attracted a great amount of attention for its ability to outperform the von Neumann computation paradigm. As the core of the neuromorphic computing chip, an artificial synapse based on the memristor, with a high accuracy in processing images, is highly desired. We report, for the first time, that artificial synapse arrays with a high accuracy in image recognition can be obtained through the fabrication of a SiNz:H memristor with a gradient Si/N ratio. The training accuracy of SiNz:H synapse arrays for image learning can reach 93.65%. The temperature-dependent I-V characteristic reveals that the gradual Si dangling bond pathway makes the main contribution towards improving the linearity of the tunable conductance. The thinner diameter and fixed disconnection point in the gradual pathway are of benefit in enhancing the accuracy of visual identification. The artificial SiNz:H synapse arrays display stable and uniform biological functions, such as the short-term biosynaptic functions, including spike-duration-dependent plasticity, spike-number-dependent plasticity, and paired-pulse facilitation, as well as the long-term ones, such as long-term potentiation, long-term depression, and spike-time-dependent plasticity. The highly efficient visual learning capability of the artificial SiNz:H synapse with a gradual conductive pathway for neuromorphic systems hold great application potential in the age of artificial intelligence (AI).

4.
Phys Chem Chem Phys ; 25(27): 18175-18181, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387207

RESUMO

Alkaline earth metal ions (Mg2+, Ca2+, Sr2+) have been introduced into Er3+:SnO2 nanocrystal co-doped silica thin films fabricated by a sol-gel method combined with a spin-coating technique. It is found that the incorporation of alkaline earth metal ions can enhance the light emission from Er3+ at the wavelength around 1540 nm and the strongest enhancement is observed in samples doped with 5 mol% Sr2+ ions. Based on X-ray diffraction, X-ray photoelectron spectroscopy and other spectroscopic measurements, the improved light emission can be attributed to more oxygen vacancies, better crystallinity and a stronger cross-relaxation process with the introduction of alkaline earth metal ions.

5.
Small ; 19(33): e2301498, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093201

RESUMO

Lithium-carbon dioxide (Li-CO2 ) batteries have attracted much attention due to their high theoretical energy density. However, due to the existance of lithium carbonate and amorphous carbon in the discharge products that are difficult to decompose, the battery shows low coulombic efficiency and poor cycle performance. Here, by adjusting the adsorption of carbon dioxide (CO2 ) on ruthenium (Ru) catalysts surface, this work reports an ultralow charge overpotential and long cycle life Li-CO2 battery that consists of typical lithium metal, ternary molten salt electrolyte (TMSE), and Ru-based cathode. Experimental results show that the Ru catalysts deposited on quartz nanofiber (QF) can suppress the four-electron conversion of CO2 to lithium carbonate (Li2 CO3 ). As a result, the battery shows a long-cycle-life of over 457 cycles at 1.0 A g-1 with a limited capacity of 500 mAh g-1 Ru . Remarkably, a recorded low discharge potential of ≈3.0 V has been achieved after 35 cycles at 0.5 A g-1 , with a charge potential retention of over 99%. Moreover, the battery can operate over 25 A g-1 and recover 96% potential. This battery technology paves the way for designing high-performance rechargeable Li-CO2 batteries with carbon neutrality.

6.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985856

RESUMO

Three-dimensional NAND flash memory with high carrier injection efficiency has been of great interest to computing in memory for its stronger capability to deal with big data than that of conventional von Neumann architecture. Here, we first report the carrier injection efficiency of 3D NAND flash memory based on a nanocrystalline silicon floating gate, which can be controlled by a novel design of the control layer. The carrier injection efficiency in nanocrystalline Si can be monitored by the capacitance-voltage (C-V) hysteresis direction of an nc-Si floating-gate MOS structure. When the control layer thickness of the nanocrystalline silicon floating gate is 25 nm, the C-V hysteresis always maintains the counterclockwise direction under different step sizes of scanning bias. In contrast, the direction of the C-V hysteresis can be changed from counterclockwise to clockwise when the thickness of the control barrier is reduced to 22 nm. The clockwise direction of the C-V curve is due to the carrier injection from the top electrode into the defect state of the SiNx control layer. Our discovery illustrates that the thicker SiNx control layer can block the transfer of carriers from the top electrode to the SiNx, thereby improving the carrier injection efficiency from the Si substrate to the nc-Si layer. The relationship between the carrier injection and the C-V hysteresis direction is further revealed by using the energy band model, thus explaining the transition mechanism of the C-V hysteresis direction. Our report is conducive to optimizing the performance of 3D NAND flash memory based on an nc-Si floating gate, which will be better used in the field of in-memory computing.

7.
Nanomaterials (Basel) ; 13(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986003

RESUMO

Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band offset between Si and SiO2 (~8.9 eV). Here, for further development of device properties, we fabricate Si nanocrystals (NCs)/SiC multilayers and study the changes in photoelectric properties of the LEDs induced by P dopants. PL peaks centered at 500 nm, 650 nm and 800 nm can be detected, which are attributed to surface states between SiC and Si NCs, amorphous SiC and Si NCs, respectively. PL intensities are first enhanced and then decreased after introducing P dopants. It is believed that the enhancement is due to passivation of the Si dangling bonds at the surface of Si NCs, while the suppression is ascribed to enhanced Auger recombination and new defects induced by excessive P dopants. Un-doped and P-doped LEDs based on Si NCs/SiC multilayers are fabricated and the performance is enhanced greatly after doping. As fitted, emission peaks near 500 nm and 750 nm can be detected. The current density-voltage properties indicate that the carrier transport process is dominated by FN tunneling mechanisms, while the linear relationship between the integrated EL intensity and injection current illustrates that the EL mechanism is attributed to recombination of electron-hole pairs at Si NCs induced by bipolar injection. After doping, the integrated EL intensities are enhanced by about an order of magnitude, indicating that EQE is greatly improved.

8.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770567

RESUMO

Artificial neural networks, as a game-changer to break up the bottleneck of classical von Neumann architectures, have attracted great interest recently. As a unit of artificial neural networks, memristive devices play a key role due to their similarity to biological synapses in structure, dynamics, and electrical behaviors. To achieve highly accurate neuromorphic computing, memristive devices with a controllable memory window and high uniformity are vitally important. Here, we first report that the controllable memory window of an HfO2/TiOx memristive device can be obtained by tuning the thickness ratio of the sublayer. It was found the memory window increased with decreases in the thickness ratio of HfO2 and TiOx. Notably, the coefficients of variation of the high-resistance state and the low-resistance state of the nanocrystalline HfO2/TiOx memristor were reduced by 74% and 86% compared with the as-deposited HfO2/TiOx memristor. The position of the conductive pathway could be localized by the nanocrystalline HfO2 and TiO2 dot, leading to a substantial improvement in the switching uniformity. The nanocrystalline HfO2/TiOx memristive device showed stable, controllable biological functions, including long-term potentiation, long-term depression, and spike-time-dependent plasticity, as well as the visual learning capability, displaying the great potential application for neuromorphic computing in brain-inspired intelligent systems.

9.
ACS Appl Mater Interfaces ; 15(6): 8200-8207, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734345

RESUMO

Developing a bifunctional electrocatalyst with remarkable performance viable for overall water splitting is increasingly essential for industrial-scale renewable energy conversion. However, the current electrocatalyst still requires a large cell voltage to drive water splitting due to the unsuitable adsorption/desorption capacity of reaction intermediates, which seriously hinders the practical application of water splitting. Herein, a unique SiOx/Ru nanosheet (NS) material was proposed as a high-performance electrocatalyst for overall water splitting. The SiOx/Ru NSs show superior performance in the hydrogen evolution reaction with a low overpotential of 23 mV (@ 10 mA cm-2) and excellent stability for nearly 200 h (@ 10 mA cm-2) in 1 M KOH. By means of the introduction of SiOx, it is beneficial for balancing the local charge density of the surrounding Ru sites. The suitable electronic coupling between the d-band electrons of Ru and the adsorbed species effectively balances the adsorption and desorption of reaction intermediates on the surface. As a result, the catalyst also exhibits overall water splitting activity with a cell voltage of only 1.496 V to reach the current density of 10 mA cm-2. The present work opens up a new strategy for designing high-performance electrocatalysts for water splitting.

10.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36649652

RESUMO

Solid-state lithium-metal batteries using inorganic solid-state electrolyte (SSE) instead of liquid-electrolyte, especially lithium-oxygen (Li-O2) battery, have attracted much more attention due to their high-energy density and safety. However, the poor interface contact between electrodes and SSEs makes these batteries lose most of their capacity and power during cycling. Here we report that by coating a heterogeneous silicon carbide on lithium metal anode and Li1.5Al0.5Ge1.5P3O12(LAGP)-SSE, a good interface contact is created between the electrode and electrolyte that can effectively reduce the interface impedance and improve the cycle performance of the assembled battery. As a result, the solid-sate Li-O2battery demonstrates a cycle lifespan of ∼78 cycles being at least 3-times higher than the solid-state Li-O2battery without silicon carbide with a capacity limitation of 1000 mAh g-1at 250 mA g-1. The characterization of discharge products indicates a typical two-electron convention of oxygen-to-lithium oxide for the solid-state Li-O2battery system. This work paves a way for developing high-energy long-cycle solid-state lithium-metal battery. The work provides insights into the interface between the Li-metal and SSE to develop high-energy long-cycle all solid-state Li-metal batteries.

11.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36701802

RESUMO

Studies on the carrier transport characteristics of semiconductor nanomaterials are the important and interesting issues which are helpful for developing the next generation of optoelectronic devices. In this work, we fabricate B-doped Si nanocrystals/SiO2multilayers by plasma enhanced chemical vapor deposition with subsequent high temperature annealing. The electronic transport behaviors are studied via Hall measurements within a wide temperature range (30-660 K). It is found that when the temperature is above 300 K, all the B-doped Si nanocrystals with the size near 4.0 nm exhibit the semiconductor-like conduction characteristics, while the conduction of Si nanocrystals with large size near 7.0 nm transforms from semiconductor-like to metal-like at high B-doping ratios. The critical carrier concentration of conduction transition can reach as high as 2.2 × 1020cm-3, which is significantly higher than that of bulk counterpart and may be even higher for the smaller Si nanocrystals. Meanwhile, the Mott variable-range hopping dominates the carrier transport when the temperature is below 100 K. The localization radius of carriers can be regulated by the B-doping ratios and Si NCs size, which is contributed to the metallic insulator transition.

12.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432355

RESUMO

Aqueous rechargeable zinc (Zn)−air batteries have recently attracted extensive research interest due to their low cost, environmental benignity, safety, and high energy density. However, the sluggish kinetics of oxygen (O2) evolution reaction (OER) and the oxygen reduction reaction (ORR) of cathode catalysts in the batteries result in the high over-potential that impedes the practical application of Zn−air batteries. Here, we report a stable rechargeable aqueous Zn−air battery by use of a heterogeneous two-dimensional molybdenum sulfide (2D MoS2) cathode catalyst that consists of a heterogeneous interface and defects-embedded active edge sites. Compared to commercial Pt/C-RuO2, the low cost MoS2 cathode catalyst shows decent oxygen evolution and acceptable oxygen reduction catalytic activity. The assembled aqueous Zn−air battery using hybrid MoS2 catalysts demonstrates a specific capacity of 330 mAh g−1 and a durability of 500 cycles (~180 h) at 0.5 mA cm−2. In particular, the hybrid MoS2 catalysts outperform commercial Pt/C in the practically meaningful high-current region (>5 mA cm−2). This work paves the way for research on improving the performance of aqueous Zn−air batteries by constructing their own heterogeneous surfaces or interfaces instead of constructing bifunctional catalysts by compounding other materials.

13.
Small ; 18(42): e2204390, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084173

RESUMO

Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw  = 9.9 ± 1.2 nm (down to 8 nm) and Hnw  = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec-1 , respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.


Assuntos
Nanofios , Silício , Catálise
14.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889681

RESUMO

As a strong candidate for computing in memory, 3D NAND flash memory has attracted great attention due to the high computing efficiency, which outperforms the conventional von-Neumann architecture. To ensure 3D NAND flash memory is truly integrated in the computing in a memory chip, a new candidate with high density and a large on/off current ratio is now urgently needed. Here, we first report that 3D NAND flash memory with a high density of multilevel storage can be realized in a double-layered Si quantum dot floating-gate MOS structure. The largest capacitance-voltage (C-V) memory window of 6.6 V is twice as much as that of the device with single-layer nc-Si quantum dots. Furthermore, the stable memory window of 5.5 V can be kept after the retention time of 105 s. The obvious conductance-voltage (G-V) peaks related to the charging process can be observed, which further confirms that the multilevel storage can be realized in double-layer Si quantum dots. Moreover, the on/off ratio of 3D NAND flash memory with a nc-Si floating gate can reach 104, displaying the characteristic of a depletion working mode of an N-type channel. The memory window of 3 V can be maintained after 105 P/E cycles. The programming and erasing speed can arrive at 100 µs under the bias of +7 V and -7 V. Our introduction of double-layer Si quantum dots in 3D NAND float gating memory supplies a new way to the realization of computing in memory.

15.
Nanoscale ; 14(30): 10816-10822, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35822626

RESUMO

Solar thermophotovoltaic (STPV) systems have attracted increasing attention due to their great prospects for breaking the Shockley-Queisser limit. As a critical component of high-performance STPV systems, fabrication of a spectrally selective emitter with good stability at high temperature is one of the main research challenges. In this study, we developed a hybrid silicon-based metasurface emitter with spectral selectivity and high temperature stability using a simple fabrication process by introducing a controlled silicon nitride (SiNx) layer on a silicon stepped nanopillar substrate coated with molybdenum (Mo). Owing to the cooperative effect of cavity mode resonance and the interference effect of the SiNx dielectric layer, our proposed silicon-based metasurface emitter achieves a broadband optical absorption of ∼95% in the wavelength range of 220-2000 nm, while effectively suppressing the heat radiation to ∼19% in the long wavelength range (>5 µm). Moreover, polarization-independence and angle-insensitivity behaviors are demonstrated in the emitters. Additionally, due to the presence of a SiNx protection layer, this silicon-based metasurface emitter is experimentally proved to sustain its excellent spectral properties after ultra-high temperature treatments, including annealing at 1273 K under an Ar atmosphere for 6 h, even at 1073 K in air for 1 h, which makes it an alternative candidate for application in actual STPV systems.

16.
Nanomaterials (Basel) ; 12(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745449

RESUMO

To enable a-SiCx:H-based memristors to be integrated into brain-inspired chips, and to efficiently deal with the massive and diverse data, high switching uniformity of the a-SiC0.11:H memristor is urgently needed. In this study, we introduced a TiSbTe layer into an a-SiC0.11:H memristor, and successfully observed the ultra-high uniformity of the TiSbTe/a-SiC0.11:H memristor device. Compared with the a-SiC0.11:H memristor, the cycle-to-cycle coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors was reduced by 92.5% and 66.4%, respectively. Moreover, the device-to-device coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors decreased by 93.6% and 86.3%, respectively. A high-resolution transmission electron microscope revealed that a permanent TiSbTe nanocrystalline conductive nanofilament was formed in the TiSbTe layer during the DC sweeping process. The localized electric field of the TiSbTe nanocrystalline was beneficial for confining the position of the conductive filaments in the a-SiC0.11:H film, which contributed to improving the uniformity of the device. The temperature-dependent I-V characteristic further confirmed that the bridge and rupture of the Si dangling bond nanopathway was responsible for the resistive switching of the TiSbTe/a-SiC0.11:H device. The ultra-high uniformity of the TiSbTe/a-SiC0.11:H device ensured the successful implementation of biosynaptic functions such as spike-duration-dependent plasticity, long-term potentiation, long-term depression, and spike-timing-dependent plasticity. Furthermore, visual learning capability could be simulated through changing the conductance of the TiSbTe/a-SiC0.11:H device. Our discovery of the ultra-high uniformity of TiSbTe/a-SiC0.11:H memristor devices provides an avenue for their integration into the next generation of AI chips.

17.
Opt Express ; 30(8): 12308-12315, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472868

RESUMO

Seeking light sources from Si-based materials with an emission wavelength meeting the requirements of optical telecommunication is a challenge nowadays. It was found that the subband emission centered near 1200 nm can be achieved in phosphorus-doped Si quantum dots/SiO2 multilayers. In this work, we propose the phosphorus/boron co-doping in Si quantum dots/SiO2 multilayers to enhance the subband light emission. By increasing the B co-doping ratio, the emission intensity is first increased and then decreased, while the strongest integrated emission intensity is almost two orders of magnitude stronger than that of P solely-doped sample. The enhanced subband light emission in co-doped samples can be attributed to the passivation of surface dangling bonds by B dopants. At high B co-doping ratios, the samples transfer to p-type and the subband light emission from phosphorus-related deep level is suppressed but the emission centered around 1400 nm is appeared.

18.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159656

RESUMO

As the building block of brain-inspired computing, resistive switching memory devices have recently attracted great interest due to their biological function to mimic synapses and neurons, which displays the memory switching or threshold switching characteristic. To make it possible for the Si-based artificial neurons and synapse to be integrated with the neuromorphic chip, the tunable threshold and memory switching characteristic is highly in demand for their perfect compatibility with the mature CMOS technology. We first report artificial neurons and synapses based on the Al/a-SiNxOy:H/P+-Si device with the tunable switching from threshold to memory can be realized by controlling the compliance current. It is found that volatile TS from Al/a-SiNxOy:H/P+-Si device under the lower compliance current is induced by the weak Si dangling bond conductive pathway, which originates from the broken Si-H bonds. While stable nonvolatile MS under the higher compliance current is attributed to the strong Si dangling bond conductive pathway, which is formed by the broken Si-H and Si-O bonds. Theoretical calculation reveals that the conduction mechanism of TS and MS agree with P-F model, space charge limited current model and Ohm's law, respectively. The tunable TS and MS characteristic of Al/a-SiNxOy:H/P+-Si device can be successfully employed to mimic the biological behavior of neurons and synapse including the integrate-and-fire function, paired-pulse facilitation, long-term potentiation and long-term depression as well as spike-timing-dependent plasticity. Our discovery supplies an effective way to construct the neuromorphic devices for brain-inspired computing in the AI period.

19.
Adv Sci (Weinh) ; 9(9): e2105623, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092351

RESUMO

Quasi-1D silicon nanowires (SiNWs) field effect transistors (FETs) integrated upon large-area elastomers are advantageous candidates for developing various high-performance stretchable electronics and displays. In this work, it is demonstrated that an orderly array of slim SiNW channels, with a diameter of <80 nm, can be precisely grown into desired locations via an in-plane solid-liquid-solid (IPSLS) mechanism, and reliably batch-transferred onto large area polydimethylsiloxane (PDMS) elastomers. Within an optimized discrete FETs-on-islands architecture, the SiNW-FETs can sustain large stretching strains up to 50% and repetitive testing for more than 1000 cycles (under 20% strain), while achieving a high hole carrier mobility, Ion /Ioff current ratio and subthreshold swing (SS) of ≈70 cm2 V-1 s-1 , >105  and 134 - 277 mV decade-1 , respectively, working stably in an ambient environment over 270 days without any passivation protection. These results indicate a promising new routine to batch-manufacture and integrate high-performance, scalable and stretchable SiNW-FET electronics that can work stably in harsh and large-strain environments, which is a key capability for future practical flexible display and wearable electronic applications.


Assuntos
Nanofios , Elastômeros , Eletrônica , Silício , Transistores Eletrônicos
20.
Small ; 18(6): e2104690, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859580

RESUMO

Stretchable electronics are finding widespread applications in bio-sensing, skin-mimetic electronics, and flexible displays, where high-density integration of elastic and durable interconnections is a key capability. Instead of forming a randomly crossed nanowire (NW) network, here, a large-scale and precise integration of highly conductive nickel silicide nanospring (SiNix -NS) arrays are demonstrated, which are fabricated out of an in-plane solid-liquid-solid guided growth of planar Si nanowires (SiNWs), and subsequent alloy-forming process that boosts the channel conductivity over 4 orders of magnitude (to 2 × 104 S cm-1 ). Thanks to the narrow diameter of the serpentine SiNix -NS channels, the elastic geometry engineering can be accomplished within a very short interconnection distance (down to ≈3 µm), which is crucial for integrating high-density displays or logic units in a rigid-island and elastic-interconnection configuration. Deployed over soft polydimethylsiloxane thin film substrate, the SiNix -NS array demonstrates an excellent stretchability that can sustain up to 50% stretching and for 10 000 cycles (at 15%). This approach paves the way to integrate high-density inorganic electronics and interconnections for high-performance health monitoring, displays, and on-skin electronic applications, based on the mature and rather reliable Si thin film technology.


Assuntos
Nanofios , Condutividade Elétrica , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...