Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 166001, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536585

RESUMO

Extremely high-temperature lightning generates NOx by electrolyzing nitrogen and oxygen molecules, regulating ozone concentration. The Pearl River Delta (PRD) is located in the world's high-value area of lightning density, and lightning-generated NOx (LNOx) cannot be ignored. Using the flash data from Guangdong-Hong Kong-Macao Lightning Location System and multi-site atmospheric composition data, we estimate the NOx variations in lightning activity and its impact on O3 across the PRD region. The cloud-to-groud (CG) frequency from 2013 to 2021 shows a decreasing trend driven by urban regions. We observe that the lightning density is steadily decreasing from the south-central part of Guangzhou City to the surrounding area. A comparison of the different sites with lightning days and non-lightning days shows that a significant amount (13. 84-20. 47 %) of ground-level NOx concentration at urban stations can be attributed to lightning NOx emissions. A lower lightning frequency and low background concentration observed at suburban sites indicated a limited contribution of LNOx. The average decrease in O3 concentration at urban stations (15.92-25.06 %) was significantly higher than that at suburban stations (5.34-8.95 %) due to the influence of titration and lower actinic radiation. There was a greater fluctuation in NOx and O3 concentrations during the cases, and the surface NOx concentration displayed the most significant responsiveness to LNOx under direct lightning striking in the tall tower. This phenomenon has not been reported, however, it is consistent with the laboratory-based observations suggesting the amount of LNO increases with peak current. LNOx significantly impacts air quality in the PRD during the high convective season. Further in situ and vertical distribution observations are necessary to explore the ground-level impact of LNOx.

2.
Biomaterials ; 267: 120462, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129190

RESUMO

Ocular surface diseases including conjunctival disorders are multifactorial progressive conditions that can severely affect vision and quality of life. In recent years, stem cell therapies based on conjunctival stem cells (CjSCs) have become a potential solution for treating ocular surface diseases. However, neither an efficient culture of CjSCs nor the development of a minimally invasive ocular surface CjSC transplantation therapy has been reported. Here, we developed a robust in vitro expansion method for primary rabbit-derived CjSCs and applied digital light processing (DLP)-based bioprinting to produce CjSC-loaded hydrogel micro-constructs for injectable delivery. Expansion medium containing small molecule cocktail generated fast dividing and highly homogenous CjSCs for more than 10 passages in feeder-free culture. Bioprinted hydrogel micro-constructs with tunable mechanical properties enabled the 3D culture of CjSCs while supporting viability, stem cell phenotype, and differentiation potency into conjunctival goblet cells. These hydrogel micro-constructs were well-suited for scalable dynamic suspension culture of CjSCs and were successfully delivered to the bulbar conjunctival epithelium via minimally invasive subconjunctival injection. This work integrates novel cell culture strategies with bioprinting to develop a clinically relevant injectable-delivery approach for CjSCs towards the stem cell therapies for the treatment of ocular surface diseases.


Assuntos
Bioimpressão , Animais , Diferenciação Celular , Hidrogéis , Impressão Tridimensional , Qualidade de Vida , Coelhos , Células-Tronco , Engenharia Tecidual
3.
Adv Healthc Mater ; 9(15): e1900977, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31697028

RESUMO

Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin-based hydrogels, have demonstrated great potential in regulating GF release. While the retention effects of various concentrations and molecular weights of heparin have been investigated, the role of geometry is unknown. In this work, 3D printing is used to fabricate GF-embedded heparin-based hydrogels with arbitrarily complex geometry (i.e., teabag, flower shapes). Simplified cylindrical core-shell structures with varied shell thickness are printed, and the rates of GF release are measured over the course of 28 days. Increasing the shell layers' thickness decreases the rate of GF release. Additionally, a mathematical model is developed, which is found capable of accurately predicting GF release kinetics in hydrogels with shell layers greater than 0.5 mm thick (R2 > 0.96). Finally, the sequential release is demonstrated by printing two GFs in alternating radial layers. By switching the spatial order, the delivery sequence of the GFs can be modulated. This study demonstrates how 3D printing can be utilized to fabricate user-defined structures with unique geometry in order to control the rate of GF release in hydrogels.


Assuntos
Heparina , Hidrogéis , Peptídeos e Proteínas de Sinalização Intercelular , Impressão Tridimensional , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...