Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447851

RESUMO

Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.


Assuntos
Cogumelos Shiitake , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Reprodução , Carpóforos/metabolismo
2.
Front Microbiol ; 14: 1286064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075869

RESUMO

Introduction: The depolymerization of lignocellulose biomass by white-rot fungi has been an important research topic. However, few simulated in-situ analyses have been conducted to uncover the decay. Methods: In this study, the white-rot Lentinula edodes was used to colonize the wood and non-wood substrates, and then hyphal transcriptional response and substrate degradation were analyzed during the spatial-temporal colonization on different type substrates to better understand the depolymerization of lignocellulose. Results and discussion: Faster growth and thicker mat of hyphae on corn stalk were observed in comparison to oak wafer. Coincide with the higher levels of gene transcripts related to protein synthesis on corn stalk. The higher lignin oxidase activity of hyphae was detected on oak wafer, and the higher cellulase activity was observed on corn stalk containing a much higher content of soluble sugars. A large number of carbohydrate-binding module (CBM1 and CBM20)-containing enzyme genes, including lytic polysaccharide monooxygenase (AA9), cellobiohydrolase (GH6 and GH7), glucanase (GH5), xylanase (GH10 and GH11), glucoamylase (GH15), and alpha-amylase (GH13), were significantly upregulated in the back-distal hyphae colonized on corn stalk. The hyphae tended to colonize and degrade the secondary cell wall, and the deposited oxalate crystal suggested that oxalate may play an important role during lignocellulose degradation. In addition, lignin was degraded in priority in oak wafer. Of note, three lignin monomers were degraded simultaneously in oak wafer but sequentially in corn stalk. This growth Our results indicated that the white-rot degradation pattern of lignocellulose is determined by the chemical composition and structure of the colonized biomass.

3.
Fungal Genet Biol ; 166: 103793, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120905

RESUMO

The medicinal fungus Wolfiporia cocos colonizes and then grows on the wood of Pinus species, and utilizes a variety of Carbohydrate Active Enzymes (CAZymes) to degrades wood for the development of large sclerotia that is mostly built up of beta-glucans. Some differentially expressed CAZymes were revealed by comparisons between the mycelia cultured on potato dextrose agar (PDA) and sclerotia formed on pine logs in previous studies. Here, different profile of expressed CAZymes were revealed by comparisons between the mycelia colonization on pine logs (Myc.) and sclerotia (Scl.b). To further explore the regulation and function of carbon metabolism in the conversion of carbohydrates from Pine species by W. cocos, the transcript profile of core carbon metabolism was firstly analyzed, and it was characterized by the up-regulated expression of genes in the glycolysis pathway (EMP) and pentose phosphate pathway (PPP) in Scl.b, as well as high expression of genes in the tricarboxylic acid cycle (TCA) in both Myc. and Scl.b stages. The conversion between glucose and glycogen and between glucose and ß-glucan was firstly identified as the main carbon flow in the differentiation process of W. cocos sclerotia, with a gradual increase in the content of ß-glucan, trehalose and polysaccharide during this process. Additionally, gene functional analysis revealed that the two key genes (PGM and UGP1) may mediate the formation and development of W. cocos sclerotia possibly by regulating ß-glucan synthesis and hyphal branching. This study has shed light on the regulation and function of carbon metabolism during large W. cocos sclerotium formation and may facilitate its commercial production.


Assuntos
Wolfiporia , Wolfiporia/genética , Wolfiporia/metabolismo , Carbono/metabolismo , Micélio , Glucose/metabolismo
4.
Genes (Basel) ; 13(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741805

RESUMO

Expansins play important roles in root growth and development, but investigation of the expansin gene family has not yet been reported in Ipomoea trifida, and little is known regarding storage root (SR) development. In this work, we identified a total of 37 expansins (ItrEXPs) in our previously reported SR-forming I. trifida strain Y22 genome, which included 23 ItrEXPAs, 4 ItrEXPBs, 2 ItrEXLAs and 8 ItrEXLBs. The phylogenetic relationship, genome localization, subcellular localization, gene and protein structure, promoter cis-regulating elements, and protein interaction network were systematically analyzed to reveal the possible roles of ItrEXPs in the SR development of I. trifida. The gene expression profiling in Y22 SR development revealed that ItrEXPAs and ItrEXLBs were down-regulated, and ItrEXPBs were up-regulated while ItrEXLAs were not obviously changed during the critical period of SR expansion, and might be beneficial to SR development. Combining the tissue-specific expression in young SR transverse sections of Y22 and sweetpotato tissue, we deduced that ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for initial SR formation and enlargement, and ItrEXLA02 might be the key gene for root growth and development. This work provides new insights into the functions of the expansin gene family members in I. trifida, especially for EXLA and EXLB subfamilies genes in SR development.


Assuntos
Ipomoea batatas , Ipomoea , Diploide , Regulação da Expressão Gênica de Plantas/genética , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea batatas/genética , Filogenia
5.
DNA Res ; 29(3)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35595238

RESUMO

Fig wasp has always been thought the species-specific pollinator for their host fig (Moraceae, Ficus) and constitute a model system with its host to study co-evolution and co-speciation. The availability of a high-quality genome will help to further reveal the mechanisms underlying these characteristics. Here, we present a high-quality chromosome-level genome for Valisa javana developed by a combination of PacBio long-read and Illumina short-read. The assembled genome size is 296.34 Mb from 13 contigs with a contig N50 length of 26.76 kb. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid fig wasps living in syconium of its highly specific host. Protein-coding genes associated with chemosensory, detoxification and venom genes were identified. Several differentially expressed genes in transcriptome data of V. javana between odor-stimulated samples and the controls have been identified in some olfactory signal transduction pathways, e.g. olfactory transduction, cAMP, cGMP-PKG, Calcim, Ras and Rap1. This study provides a valuable genomic resource for a fig wasp, and sheds insight into further revealing the mechanisms underlying their adaptive traits to their hosts in different places and co-speciation with their host.


Assuntos
Ficus , Vespas , Animais , Cromossomos , Ficus/genética , Filogenia , Simbiose , Vespas/genética
6.
IMA Fungus ; 12(1): 35, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930496

RESUMO

The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.

7.
ACS Nano ; 15(12): 19321-19333, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34851608

RESUMO

Chemodynamic therapy (CDT) destroys cancer cells by converting H2O2 or O2 into reactive oxygen species (ROS), but its therapeutic efficacy is restricted by the antioxidant capacity of tumor. Previous solutions focused on strengthening the nanodrugs with the ability to increase ROS production or weaken the antioxidant capacity of cancer cells. Conversely, we here develop a mild nanodrug with negligible side effects. Specifically, the Au@Pt nanozyme decorated on a bacterial surface (Bac-Au@Pt) is reported to achieve precise CDT. Due to the tumor targeting ability of bacteria and catalytic property of Au@Pt nanozyme under acidic conditions, this nanosystem can release ROS to tumor cells effectively. In addition, the interferon gamma released by T cells specifically decreases the intracellular reductants in tumor cells, while having no obvious effect on normal cells. Therefore, a low dose of Bac-Au@Pt achieves a satisfactory therapeutic efficacy to tumor cells and is nontoxic to normal cells even at their acidic components. This nanosystem enables CDT and immunotherapy to mutually benefit and improve by each other, providing a promising strategy to achieve high anticancer efficacy even with a low dose usage.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Bactérias , Catálise , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
8.
Insects ; 12(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564255

RESUMO

Figs and fig wasps are highly species-specific and comprise a model system for studying co-evolution and co-speciation. The evolutionary relationships and molecular adaptations of fig wasps to their fig hosts are poorly understood, and this is in part due to limited sequence data. Here, we present large-scale transcriptomic datasets of 25 fig wasp species with the aim of uncovering the genetic basis for host specificity. Our phylogenetic results support the monophyly of all genera associated with dioecious figs, and two genera associated with monoecious figs, Eupristina and Platyscapa, were revealed to be close relatives. We identified gene loss and gain, potentially rapidly evolving genes, and genes under positive selection. Potentially functional changes were documented and we hypothesize as to how these may determine host specificity. Overall, our study provides new insights into the evolutionary diversification of fig wasps and contributes to our understanding of adaptation in this group.

9.
J Genet Genomics ; 48(1): 75-87, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33744162

RESUMO

Hypsizygus marmoreus is one of the most important edible fungi in Basidiomycete division and includes white and gray strains. However, very limited knowledge is known about the genomic structures and the genetic basis for the white/gray diversity of this mushroom. Here, we report the near-complete high-quality H. marmoreus genome at the chromosomal level. Comparative genomics analysis indicates that chromosome structures were relatively conserved, and variations in collinearity and chromosome number were mainly attributed by chromosome split/fusion events in Aragicales, whereas the fungi genome experienced many genomic chromosome fracture, fusion, and genomic replication events after the split of Aragicales from Basidiomycetes. Resequencing of 57 strains allows us to classify the population into four major groups and associate genetic variations with morphological features, indicating that white strains were not originated independently. We further generated genetic populations and identified a cytochrome P450 as the candidate causal gene for the melanogenesis in H. marmoreus based on bulked segregant analysis (BSA) and comparative transcriptome analysis. The high-quality H. marmoreus genome and diversity data compiled in this study provide new knowledge and resources for the molecular breeding of H. marmoreus as well as the evolution of Basidiomycete.


Assuntos
Agaricales , Agaricales/química , Agaricales/genética , Genoma Fúngico , Genômica , Análise de Sequência de DNA
10.
J Anim Ecol ; 90(7): 1678-1690, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738802

RESUMO

Plants, phytophagous insects and their parasitoids form the most diverse assemblages of macroscopic organisms on earth. Enclosed assemblages in particular represent a tractable system for studying community assembly and diversification. Communities associated with widespread plant species are especially suitable as they facilitate a comparative approach. Pantropical fig-wasp communities represent a remarkably well-replicated system, ideal for studying these historical processes. We expect high dispersal ability in non-pollinating fig wasps to result in lower geographical turnover in comparison to pollinating fig wasps. The ability of non-pollinating wasps to utilise a number of hosts (low host specificity) is a key determinant of overall geographical range, with intraspecific competition becoming a constraining factor should diet breadth overlap among species. Finally, we expect conserved community structure throughout the host range. We aim to test these expectations, derived from population genetic and community studies, using the multi-trophic insect community associated with Ficus hirta throughout its 3,500 km range across continental and insular Asia. We collect molecular evidence from one coding mitochondrial gene, one non-coding nuclear gene and multiple microsatellites across 25 geographical sites. Using these data, we establish species boundaries, determine levels of host specificity among non-pollinating fig wasps and quantify geographical variation in community composition. We find low host specificity in two genera of non-pollinating fig wasps. Functional community structure is largely conserved across the range of the host fig, despite limited correspondence between the ranges of non-pollinator and pollinator species. While nine pollinators are associated with Ficus hirta, the two non-pollinator tribes developing in its figs each contained only four species. Contrary to predictions, we find stronger isolation by distance in non-pollinators than pollinators. Long-lived non-pollinators may disperse more gradually and be less reliant on infrequent long-distance dispersal by wind currents. Segregation among non-pollinating species across their range is suggestive of competitive exclusion and we propose that this may be a result of increased levels of local adaptation and moderate, but regular, rates of dispersal. Our findings provide one more example of lack of strict codiversification in the geographical diversification of plant-associated insect communities.


Assuntos
Ficus , Parasitos , Vespas , Animais , Especificidade de Hospedeiro , Filogenia , Polinização , Simbiose
11.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187244

RESUMO

Tea flower saponins (TFS) possess effective anticancer properties. The diversity and complexity of TFS increases the difficulty of their extraction and purification from tea flowers. Here, multiple methods including solvent extraction, microporous resin separation and preparative HPLC separation were used to obtain TFS with a yield of 0.34%. Furthermore, we revealed that TFS induced autophagy-as evidenced by an increase in MDC-positive cell populations and mCherry-LC3B-labeled autolysosomes and an upregulation of LC3II protein levels. 3-MA reversed the decrease in cell viability induced by TFS, showing that TFS induced autophagic cell death. TFS-induced autophagy was not dependent on the Akt/mTOR/p70S6K signaling pathway. TFS-induced autophagy in OVCAR-3 cells was accompanied by ERK pathway activation and reactive oxygen species (ROS) generation. This paper is the first report of TFS-mediated autophagy of ovarian cancer cells. These results provide new insights for future studies of the anti-cancer effects of TFS.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia , Camellia sinensis/química , Neoplasias Ovarianas/patologia , Saponinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Feminino , Flores/química , Humanos , Lisossomos/química , Proteínas Associadas aos Microtúbulos/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/química , Transdução de Sinais
12.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752095

RESUMO

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Assuntos
Apoptose/efeitos dos fármacos , Camellia sinensis/química , Extratos Vegetais/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camellia sinensis/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Flores/química , Flores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Proteína Supressora de Tumor p53/metabolismo
13.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560563

RESUMO

Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Flores/química , Saponinas/farmacologia , Chá/química , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Espectrometria de Massas , Estrutura Molecular , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Saponinas/química , Transdução de Sinais/efeitos dos fármacos
14.
Int J Mol Sci ; 21(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940908

RESUMO

Morchella crassipes (Vent.) Pers., a typical yellow morel species with high economic value, is mainly distributed in the low altitude plains of Eurasia. However, rare research has been performed on its genomics and polarity, thus limiting its research and development. Here, we reported a fine physical map of the nuclear genome at the subchromosomal-scale and the complete mitochondrial genome of M. crassipes. The complete size of the nuclear genome was 56.7 Mb, and 23 scaffolds were assembled, with eight of them being complete chromosomes. A total of 11,565 encoding proteins were predicted. The divergence time analysis showed that M. crassipes representing yellow morels differentiated with black morels at ~33.98 Mya (million years), with 150 gene families contracted and expanded in M. crassipes versus the two black morels (M. snyderi and M. importuna). Furthermore, 409 CAZYme genes were annotated in M. crassipes, containing almost all plant cell wall degrading enzymes compared with the mycorrhizal fungi (truffles). Genomic annotation of mating type loci and amplification of the mating genes in the monospore population was conducted, the results indicated that M. crassipes is a heterothallic fungus. Additionally, a complete circular mitochondrial genome of M. crassipes was assembled, the size reached as large as 531,195 bp. It can be observed that the strikingly large size was the biggest up till now, coupled with 14 core conserved mitochondrial protein-coding genes, two rRNAs, 31 tRNAs, 51 introns, and 412 ncORFs. The total length of intron sequences accounted for 53.67% of the mitochondrial genome, with 19 introns having a length over 5 kb. Particularly, 221 of 412 ncORFs were distributed within 51 introns, and the total length of the ncORFs sequence accounted for 40.83% of the mitochondrial genome, and 297 ncORFs had expression activity in the mycelium stage, suggesting their potential functions in M. crassipes. Meanwhile, there was a high degree of repetition (51.31%) in the mitochondria of M. crassipes. Thus, the large number of introns, ncORFs and internal repeat sequences may contribute jointly to the largest fungal mitochondrial genome to date. The fine physical maps of nuclear genome and mitochondrial genome obtained in this study will open a new door for better understanding of the mysterious species of M. crassipes.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Sequenciamento Completo do Genoma/métodos , Ascomicetos/genética , Regulação Fúngica da Expressão Gênica , Tamanho do Genoma , Genoma Fúngico , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia
15.
Int J Biol Macromol ; 143: 373-381, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830457

RESUMO

The complete mitochondrial genome of Morchella importuna, the famous edible and medicinal mushroom, was assembled as a 272,238 bp single circular dsDNA. As the largest mitogenome among fungi, it exhibits several distinct characteristics. The mitogenome of M. importuna encoded 14 core conserved mitochondrial protein-coding genes and 151 mitochondrial non-conserved open reading frames (ncORFs) were predicted, of which 61 were annotated as homing endonuclease genes, and 108 were confirmed to be expressed during the vegetative growth stages of M. importuna. In addition, 34 introns were identified in seven core genes (cob, cox1, cox2, cox3, nad1, nad4 and nad5) and two rRNA genes (rrnS and rrnL) with a length from 383 bp to 7453 bp, and eight large introns with a length range of 2340 bp to 7453 bp contained multiple intronic mtORFs. Moreover, 34 group I (IA, IB, IC1, IC2, ID and derived group I introns) and four group II intron domains were identified for the 34 introns, including five hybrid ones. Furthermore, the M. importuna mitogenome showed the presence of about 18.7% mitogenomic interspersed repeats. These and the aforementioned ncORFs and introns, contributed to the enlarged size of the mitogenome.


Assuntos
Ascomicetos/genética , Genoma Mitocondrial/genética , Anotação de Sequência Molecular , Ascomicetos/classificação , Íntrons/genética , Mitocôndrias/genética , Fases de Leitura Aberta/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética
16.
3 Biotech ; 9(3): 81, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30800592

RESUMO

True morels (Morchella spp.) are edible, medicinal mushrooms which have recently been artificially cultivated in China but stable production remains a problem. Here, we describe complete and comprehensive transcriptome of Morchella importuna at the stages of vegetative mycelium (VM), initial sclerotium (IS) and mature sclerotium (MS) by deep transcriptional sequencing and de novo assembly for the first time and which will potentially provide useful information for improving its cultivation. A total of 26,496 genes were identified with a contig N50 length of 1763 bp and an average length of over 1064 bp. Additionally, 11,957 open reading frames (ORFs) were predicted and 9676 of them (80.9%) were annotated. The 2605 differentially expressed genes (DEGs) identified by gene expression clustering were mainly involved with energy metabolism and could be divided into three broad clusters, of which genes in cluster_1 and cluster_2 were involved in the metabolic process of carbohydrate, polysaccharide, hydrolase, caprolactam, beta-galactosidase, and disaccharide, respectively. Genes in cluster_3 were the largest category, mainly identified with the catalytic activity and transporter activity. Overall, the enzymes involved in the carbohydrate metabolism were highly expressed, and the CAZyme (carbohydrate-active enzyme) genes were significantly expressed within cluster_3. For expression verification, 16 CAZYme genes were selected for qRT-PCR, and the results suggested that the catabolism of carbohydrates occurs mainly in the vegetative mycelium stage, and the anabolism of the energy-rich substances is the main event of mycelial growth and sclerotial morphogenesis of M. importuna.

17.
Mol Ecol ; 28(9): 2391-2405, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753744

RESUMO

The ways that plant-feeding insects have diversified are central to our understanding of terrestrial ecosystems. Obligate nursery pollination mutualisms provide highly relevant model systems of how plants and their insect associates have diversified and the over 800 species of fig trees (Ficus) allow comparative studies. Fig trees can have one or more pollinating fig wasp species (Agaonidae) that breed within their figs, but factors influencing their number remain to be established. In some widely distributed fig trees, the plants form populations isolated by large swathes of sea, and the different populations are pollinated by different wasp species. Other Ficus species with continuous distributions may present genetic signatures of isolation by distance, suggesting more limited pollinator dispersal, which may also facilitate pollinator speciation. We tested the hypothesis that Ficus hirta, a species for which preliminary data showed genetic isolation by distance, would support numerous pollinator species across its range. Our results show that across its range F. hirta displays clinal genetic variation and is pollinated by nine parapatric species of Valisia. This is the highest number of pollinators reported to date for any Ficus species, and it is the first demonstration of the occurrence of parapatric pollinator species on a fig host displaying continuous genetic structure. Future comparative studies across Ficus species should be able to establish the plant traits that have driven the evolution of pollinator dispersal behaviour, pollinator speciation and host plant spatial genetic structure.


Assuntos
Ficus/fisiologia , Variação Genética , Polinização , Vespas/fisiologia , Animais , Sudeste Asiático , DNA de Cloroplastos , Ficus/genética , Genes de Insetos , Repetições de Microssatélites , Isolamento Reprodutivo , Árvores , Vespas/genética
18.
Gigascience ; 7(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202850

RESUMO

Background: Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies. Results: Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo. Conclusions: These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


Assuntos
Processamento Alternativo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poaceae/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Anotação de Sequência Molecular
19.
Gigascience ; 7(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101322

RESUMO

Background: Calamus simplicifolius and Daemonorops jenkinsiana are two representative rattans, the most significant material sources for the rattan industry. However, the lack of reference genome sequences is a major obstacle for basic and applied biology on rattan. Findings: We produced two chromosome-level genome assemblies of C. simplicifolius and D. jenkinsiana using Illumina, Pacific Biosciences, and Hi-C sequencing data. A total of ∼730 Gb and ∼682 Gb of raw data covered the predicted genome lengths (∼1.98 Gb of C. simplicifolius and ∼1.61 Gb of D. jenkinsiana) to ∼372 × and ∼426 × read depths, respectively. The two de novo genome assemblies, ∼1.94 Gb and ∼1.58 Gb, were generated with scaffold N50s of ∼160 Mb and ∼119 Mb in C. simplicifolius and D. jenkinsiana, respectively. The C. simplicifolius and D. jenkinsiana genomes were predicted to harbor 51,235 and 53,342 intact protein-coding gene models, respectively. Benchmarking Universal Single-Copy Orthologs evaluation demonstrated that genome completeness reached 96.4% and 91.3% in the C. simplicifolius and D. jenkinsiana genomes, respectively. Genome evolution showed that four Arecaceae plants clustered together, and the divergence time between the two rattans was ∼19.3 million years ago. Additionally, we identified 193 and 172 genes involved in the lignin biosynthesis pathway in the C. simplicifolius and D. jenkinsiana genomes, respectively. Conclusions: We present the first de novo assemblies of two rattan genomes (C. simplicifolius and D. jenkinsiana). These data will not only provide a fundamental resource for functional genomics, particularly in promoting germplasm utilization for breeding, but also serve as reference genomes for comparative studies between and among different species.


Assuntos
Calamus/genética , Cromossomos de Plantas/genética , Genoma de Planta
20.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149649

RESUMO

Morchella is a popular edible fungus worldwide due to its rich nutrition and unique flavor. Many research efforts were made on the domestication and cultivation of Morchella all over the world. In recent years, the cultivation of Morchella was successfully commercialized in China. However, the biology is not well understood, which restricts the further development of the morel fungus cultivation industry. In this paper, we performed de novo sequencing and assembly of the genomes of two monospores with a different mating type (M04M24 and M04M26) isolated from the commercially cultivated strain M04. Gene annotation and comparative genome analysis were performed to study differences in CAZyme (Carbohydrate-active enzyme) enzyme content, transcription factors, duplicated sequences, structure of mating type sites, and differences at the gene and functional levels between the two monospore strains of M. importuna. Results showed that the de novo assembled haploid M04M24 and M04M26 genomes were 48.98 and 51.07 Mb, respectively. A complete fine physical map of M. importuna was obtained from genome coverage and gene completeness evaluation. A total of 10,852 and 10,902 common genes and 667 and 868 endemic genes were identified from the two monospore strains, respectively. The Gene Ontology (GO) and KAAS (KEGG Automatic Annotation Serve) enrichment analyses showed that the endemic genes performed different functions. The two monospore strains had 99.22% collinearity with each other, accompanied with certain position and rearrangement events. Analysis of complete mating-type loci revealed that the two monospore M. importuna strains contained an independent mating-type structure and remained conserved in sequence and location. The phylogenetic and divergence time of M. importuna was analyzed at the whole-genome level for the first time. The bifurcation time of morel and tuber was estimated to be 201.14 million years ago (Mya); the two monospore strains with a different mating type represented the evolution of different nuclei, and the single copy homologous genes between them were also different due to a genetic differentiation distance about 0.65 Mya. Compared with truffles, M. importuna had an extension of 28 clusters of orthologous genes (COGs) and a contraction of two COGs. The two different polar nuclei with different degrees of contraction and expansion suggested that they might have undergone different evolutionary processes. The different mating-type structures, together with the functional clustering and enrichment analysis results of the endemic genes of the two different polar nuclei, imply that M. importuna might be a heterothallic fungus and the interaction between the endemic genes may be necessary for its complete life history. Studies on the genome of M. importuna facilitate a better understanding of morel biology and evolution.


Assuntos
Ascomicetos/fisiologia , Genoma Fúngico , Genômica , Ascomicetos/classificação , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Anotação de Sequência Molecular , Filogenia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...