Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Sci Total Environ ; 924: 171523, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453078

RESUMO

Vegetable production is commonly accompanied by high nitrogen fertilizer rates but low nitrogen use efficiency in China. Reduced fertilization has been frequently recommended in existing studies as an efficient measurement to avoid large amount of nutrient loss and subsequent nonpoint source pollution. However, the reported responses of vegetable yield and nitrogen losses to reduced fertilization rates varied in a large range, which has resulted into large uncertainties in the potential benefits of those recommended reduction rates. Thus, we constructed the relationship between responses of nitrogen losses and vegetable yield to reduced nitrogen fertilization rates to determine the optimal range of reduction rates for nitrogen fertilization in a proportional form based on data reported in literatures across China's mainland, and evaluated the roles of greenhouse, managing options, and vegetable species on the responses. The relationships were constructed separately for 4 subregions: Northern arid and semiarid, loess plateau regions (NSL), Temperate monsoon zone (TMZ), Southeast monsoon zone (SMZ), Southwest zone (SWZ). The optimal nitrogen fertilizer reduction range for the TMZ, SMZ and SWZ were 51 % to 67 %, 40 % to 66 % and 54 % to 80 %, respectively and no reduction for NSL. Vegetable yields were not be sacrificed when fertilizations were reduced within the optimal ranges. Greenhouse and managing options showed no significant effect on the responses of both vegetable yield and nitrogen losses by the optimal reduction range but vegetable species played a relatively important role on the responses of vegetable yield. This indicated that the optimal reduction rates can be effective on reducing nitrogen loss in both open-field and greenhouse conditions across China's mainland without extra managing options. Therefore, the optimal reduction rates can still serve as a good starting point for making regional plans of nitrogen reduction that help balancing the chasing of high vegetable yield and low nitrogen loss.


Assuntos
Agricultura , Verduras , Agricultura/métodos , Fertilizantes , Nitrogênio/análise , China , Fertilização , Solo
2.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540857

RESUMO

The composition of culture substrate is an important environmental factor that affects the growth and metabolism of Hypsizygus marmoreus, and sawdust is commonly used as the substrate for cultivating mushrooms. However, the influences of sawdust on metabolic level of H. marmoreus in mycelial growth is little reported. In this study, the effect of sawdust addition on mycelial growth rate, morphological characteristics and nutrient content of H. marmoreus was explored, and the metabolic response was analyzed based on LC-MS/MS. The results showed the mycelial growth rates and the number of mycelial clamp connections in sawdust medium A and sawdust medium B were significantly higher than that of the basic medium (Control). The mycelial morphology in sawdust medium A was denser, with higher edge trimness and stronger aerial mycelia. The contents of crude fiber, crude protein and polysaccharide of the mycelia from sawdust medium A increased by 85.15%, 90.65% and 92.61%, respectively, compared to that in the basic medium. A total of 551 metabolites were identified and obtained. The differential accumulated metabolites (DAMs) were mainly amino acids, lipids compounds and carbohydrates. It was speculated that the addition of sawdust played a vital role in promoting the cell division and, thus, the formation of clamp connections in H. marmoreus mycelia. Regarding amino acids, the metabolism of glycine, serine and ABC transporters was active with the increase in sawdust, thereby increasing the protein content. And some valuable bioactive molecules were found, such as docosahexaenoic acid (DHA). This study will lay the foundation for further research on the substance transformation and quality improvement of cultivation substrate for mushrooms.

3.
J Hazard Mater ; 465: 133224, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101022

RESUMO

Human and veterinary antibiotics occur widely in soil ecosystems and pose a serious threat to soil health. Landscape structure can be linked to Earth surface processes and anthropogenic footprints and may influence the variability of antibiotics in soil. In this study, an improved landscape source-sink model was used to characterize source-sink structures using the location-weighted landscape index (LWLI), which can be linked to antibiotic seasonality. The topographic wetness index was employed to identify source and sink landscapes, which represent antibiotic transport pathways via topography-driven hydrological processes. The results indicate that LWLI values and antibiotic seasonality are typically higher in farmland soils than in forest and orchard soils. LWLI values exhibit significant positive correlations with antibiotic seasonality in soils (R2: 0.33-0.58). Furthermore, landscape source-sink structures have a significant influence on antibiotic seasonality between winter and other seasons in farmland soils; however, these structures affect antibiotic seasonality between summer and other seasons in forest and orchard soils. The results of this study indicate that water movement regulated by landscape structure may play a crucial role in influencing antibiotic seasonality in soils at the watershed scale, and the landscape source-sink model can be used to quantitatively evaluate antibiotic seasonality in soil environment.


Assuntos
Ecossistema , Solo , Humanos , Solo/química , Estações do Ano , Monitoramento Ambiental , Antibacterianos/análise , China
4.
J Hazard Mater ; 465: 133363, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157809

RESUMO

The presence of antibiotics in environment is an emerging concern because of their ubiquitous occurrence, adverse eco-toxicological effects, and promotion of widespread antibiotic resistance. Urban soil, which plays a noticeable role in human health, may be a reservoir of antibiotics because of intensive human disturbance. However, little is understood about the vulnerability of soil to antibiotic contamination in urban areas and the spatial-temporal characteristics of anthropogenic and environmental pressures. In this study, we developed a framework for the dynamic assessment of soil vulnerability to antibiotic contamination in urban green spaces, combining antibiotic release, exposure, and consequence layers. According to the results, soil vulnerability risks shown obvious spatial-temporal variation in urban areas. Areas at a high risk of antibiotic contamination were usually found in urban centers with high population densities and in seasons with low temperature and vegetation coverage. Quinolones (e.g., ofloxacin and norfloxacin) were priority antibiotics that posed the highest vulnerability risks, followed by tetracyclines. We also confirmed the effectiveness of the vulnerability assessment by correlating soil vulnerability indexes and antibiotic residues in urban soils. Furthermore, urbanization- and land use-related parameters were shown to be critical in regulating soil vulnerability to antibiotic contamination based on sensitivity analysis. These findings have important implications for the prediction and mitigation of urban soil contamination with antibiotics and strategies to improve human health.


Assuntos
Antibacterianos , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo , Urbanização , Parques Recreativos , Monitoramento Ambiental , Poluentes do Solo/análise , China
5.
Biomolecules ; 13(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38136674

RESUMO

Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nutritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that the exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS) signaling molecules, 3-oxo-C6-HSL, cyclo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (p < 0.05). In addition, non-targeted metabolomic analysis revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (p < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respectively (p < 0.05). We speculate that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. marmoreus.


Assuntos
Agaricales , Fermentação , Serratia
6.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2436-2444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899110

RESUMO

Rapid urbanization would have significant impacts on vegetation phenology. However, the factors influencing the spatiotemporal changes in urban vegetation phenology are still unclear. We used five fitting methods to construct normalized difference vegetation index (NDVI) curves in the Beijing-Tianjin-Hebei urban agglomeration, and obtained the phenology characteristics of urban vegetation in this area from 2001 to 2019 by the threshold method. We compared the spring and autumn phenology in urban built-up areas and hilly areas, and analyzed the effects of precipitation, air temperature, and land surface temperature (LST) on vegetation phenology. The results showed that from 2001 to 2019, the start of the growing season (SOS) in urban built-up areas in the Beijing-Tianjin-Hebei agglomeration was on average 16.88 days earlier than that in hilly areas, and that the end of the growing season (EOS) in urban built-up areas was 12.22 days later than that in hilly areas. During the study period, the SOS of vegetation in urban built-up areas of the Beijing-Tianjin-Hebei region had been gradually delayed, while that in hilly areas was gradually advanced, and the rate of change of phenology in the urban built-up areas was faster than that in the hilly areas. The difference between the SOS of the two areas decreased significantly over time (-0.58 d·a-1). As for the EOS, the urban built-up areas and hilly areas both showed a trend of delayed, but the differences between them was not significant with time (-0.10 d·a-1). The contribution of LST in the urban built-up areas to SOS was close to that of air temperature, while the contribution of LST in hilly areas to SOS was only 1/2 of that of air temperature, indicating that the heat island effect and air temperature within the city jointly influenced urban vegetation phenology, and their contributions were almost equal. The results could help understand the role of urbanization in the variations of vegetation phenology and provide a reference for further assessment of carbon sink potential of urban vegetation.


Assuntos
Temperatura Alta , Urbanização , Cidades , Estações do Ano , Temperatura
7.
Nat Commun ; 14(1): 6094, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773228

RESUMO

Land system intensification has substantially enhanced crop production; however, it has also created soil antibiotic pollution, undermining crop production. Here, we projected soil antibiotic pollution risks to crop production at multiple geographical scales in China and linked them to land system intensification (including arable land expansion and input increase). Our projections suggest that crop production will substantially decrease when the soil antibiotic pollution risk quotient exceeds 8.30-9.98. Land systems explain most of the variability in antibiotic pollution risks (21-66%) across spatial scales. The convex nonlinearities in tradeoffs between antibiotic pollution risk and crop production indicate that vegetable and wheat production have higher thresholds of land system intensification at which the risk-yield tradeoffs will peak than do maize and rice production. Our study suggests that land system intensification below the minimum thresholds at multiple scales is required for acceptable antibiotic pollution risks related to crop yield reduction.


Assuntos
Agricultura , Produção Agrícola , Verduras , China , Solo
8.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1459-1466, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37694406

RESUMO

Urban ecological quality is a necessary attribute for a healthy urban ecological state. In the period of urban development from large-scale incremental construction to stock improvement and quality transformation and incremental structural adjustment, there are many gaps between urban ecological quality construction and the requirements of the new stage. There is an urgent need to understand and integrate multiple needs, and construct an indicator system to promote the balance between supply and demand of ecological resources and efficient use to enhance urban ecological quality. We used the analysis methods of CiteSpace literature analysis, relevant policy collation and questionnaire survey to systematically sort out the key points of concern and differences in understanding among the three perspectives of science, government, and the public. The results showed that all the three perspectives, i.e., science, government, and public, were more concerned with indicators related to urban green space, gray infrastructure, and policy control. The concerns of science and public addressed indicators related to urban green space the most, while government being most concerned with indicators related to gray infrastructure. Based on those findings, we developed a core urban ecological quality index system with a total of 25 indicators, covering 10 major types of urban green space, environmental quality, gray infrastructure, and so on.


Assuntos
Ecossistema , Parques Recreativos , Reforma Urbana
9.
J Hazard Mater ; 459: 132286, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37595464

RESUMO

The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.


Assuntos
Contaminação de Medicamentos , Microbiota , Adulto , Criança , Humanos , Consórcios Microbianos , Reprodução , Solo
10.
Sci Data ; 10(1): 319, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236982

RESUMO

Soil conservation service (SC) is defined as the ability of terrestrial ecosystems to control soil erosion and protect soil function. A long-term and high-resolution estimation of SC is urgent for ecological assessment and land management on a large scale. Here, a 300-m resolution Chinese soil conservation dataset (CSCD) from 1992 to 2019, for the first time, is established based on the Revised Universal Soil Loss Equation (RUSLE) model. The RUSLE modelling was conducted based on five key parameters, including the rainfall erosivity (interpolation of daily rainfall), land cover management (provincial data), conservation practices (weighted by terrain and crop types), topography (30 m), and soil properties (250 m). The dataset agrees with previous measurements in all basins (R2 > 0.5) and other regional simulations. Compared with current studies, the dataset has long-term, large-scale, and relatively high-resolution characteristics. This dataset will serve as a base to open out the mechanism of SC variations in China and could help assess the ecological effects of land management policies.

11.
Environ Pollut ; 330: 121754, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137407

RESUMO

Wetlands sequestrate carbon at the highest rate than any other ecosystems on Earth. However, the spatial and temporal dynamics of GHGs emissions from the wetland ecosystems in China are still elusive. We synthesized 166 publications that contain 462 in situ measurements of GHGs emissions from the natural wetlands in China, and further analyzed the variability and the drivers of GHGs emissions in eight subdivisions of China's wetlands. The results show that the current studies are mainly concentrated in the estuaries, Sanjiang Plain, and Zoige wetlands. The average CO2 emissions, CH4 fluxes and N2O fluxes from Chinese wetlands were 218.84 mg·m-2·h-1, 1.95 mg·m-2·h-1 and 5.8 × 10-2 mg·m-2·h-1, respectively. The global warming potential (GWP) of China's wetlands was estimated to be 1881.36 TgCO2-eq·yr-1, with CO2 emissions contributing more than 65% to the GWP value. The combined GWP values of Qinghai-Tibet Plateau wetlands, coastal wetlands and northeastern wetlands account for 84.8% of GWP of China's wetlands. Correlation analysis showed that CO2 emissions increased with the increasing mean annual temperature, elevation, annual rainfall, and wetland water level, but decreased with soil pH. CH4 fluxes increased with the mean annual temperature and soil water content but decreased with the redox potential. This study analyzed the drivers of GHGs emissions from wetland ecosystems at the national scale, and GWP values of eight wetland subregions of China were comprehensively assessed. Our results are potentially useful for the global GHGs inventory, and can help assess the response of GHGs emissions of wetland ecosystem to environmental and climate change.


Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Gases de Efeito Estufa/análise , Ecossistema , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , China , Solo
12.
Sci Total Environ ; 867: 161493, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634779

RESUMO

Antibiotics ubiquitously occur in soils and pose a potential threat to ecosystem health. Concurrently, urbanization and land-use intensification have transformed soil ecosystems, but how they affect antibiotic contamination remain largely unknown. Therefore, we profiled a broad-scale pattern of antibiotics in soil from agricultural lands and green spaces across urbanization gradients, and explored the hypothetical models to verify the effects of urbanization and land-use intensity on antibiotic contamination. The results showed that antibiotic concentrations and seasonality were higher in agricultural soil than in green spaces, which respectively showed linear or hump-shaped declines along with the increasing distance to urban centers. However, the response of antibiotic pollution to land-use intensity depended strongly on the urbanization level. More importantly, interactions between urbanization and land-use explained, on average, 59.6 % of the variation in antibiotic concentrations in soil across urbanization gradients. The proposed interactions can predict the non-linear changes in soil vulnerability to antibiotic contamination. Our study revealed that the urbanization can modulate the effects of land-use intensity on antibiotic concentration and seasonality in the soil environment, and that there is high stress on peri-urban soil ecosystems due to ongoing land-use changes arising from rapid urbanization processes.


Assuntos
Solo , Urbanização , Humanos , Ecossistema , Antibacterianos , Agricultura , China
13.
J Environ Sci (China) ; 125: 678-690, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375949

RESUMO

Antibiotics in soil environment are regarded as emerging pollutants and have introduced increasing risks to soil ecosystem and human health in rapid urbanization areas. Identifying the occurrence and spatial variability of antibiotics in soils is an urgent issue in sustaining soil security. In this study, antibiotics in soils were investigated and analyzed in Beijing-Tianjin-Hebei urban agglomeration. The occurrence, spatial distribution, and related affecting factors of antibiotics in soils were identified and ecological risks of antibiotics in soil environment were assessed. Results showed that (1) The mean concentration of soil antibiotics in Beijing-Tianjin-Hebei urban agglomeration was 21.79 µg/kg. Land use substantially affected the occurrence and concentration of antibiotics in soils. Concentrations of antibiotics in cropland and orchard soils were 2-3 times higher than the other land use types. (2) The concentrations of antibiotics in soils in Beijing-Tianjin-Hebei urban agglomeration presented a spatial pattern of high values in southeast, and low values in northwest. Spatial variability of antibiotics in soils was closely related to the application of organic fertilizer and wastewater irrigation as well as topographical features. Furthermore, soil properties and land management policy had substantial influences on soil antibiotics, and soil heavy metals may aggravate the accumulation of antibiotics in soils. (3) Ecological risks assessment of antibiotics in soils demonstrated that erythromycin (ERY), sulfamethoxazole (SMX), and doxycycline (DOX) may introduce high risks to soil ecosystem health, and more attention should be paid to the areas with intensive human activities that had potential high risk to soil ecosystem health. This study suggests that scientific land and soil management should be considered to prevent soil antibiotic pollution and sustain soil security in urban agglomeration.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Poluentes do Solo/análise , Antibacterianos/análise , Ecossistema , Metais Pesados/análise , Águas Residuárias , China , Monitoramento Ambiental , Medição de Risco
14.
Food Res Int ; 160: 111677, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076446

RESUMO

Swallowing threshold is a critical parameter that marks the condition of food after mastication in the human mouth being ready to be swallowed. In the current study, a new aspect was investigated in which the food boluses from cooked rice with three moisture contents (52%, 63% and 73% on a wet basis) were masticated and collected just before swallowing by a group of twelve voluntary participants. Both mechanical/textural properties and physicochemical characteristics of the cooked rice and their boluses were investigated. The results show that the oral duration of the cooked rice was positively associated with rice hardness, but negatively correlated with the moisture content of rice boluses. After chewing, the textural properties except cohesiveness and adhesiveness varied little among the rice bolus samples. A significant decrease in the textural parameters was shown for the cooked rice with a low (52%) and middle (63%) moisture content after mastication. In contrast, the decrease was insignificant for the cooked rice having the highest moisture content (73%). Consistently, a negative correlation between the hardness of cooked rice and the amount of soluble reducing sugar in the rice boluses was presented. The salivary impregnation and the particle size distribution of the rice boluses at the swallowing threshold were independent on rice physics (i.e., initial moisture content, texture) and oral physiology. In addition, due to the high efficiency of salivary α-amylase, the starch in cooked rice could be hydrolyzed as much as one-third during oral digestion. The present study suggests that the initial moisture content of cooked rice and mastication conditions such as the presence of α-amylase and salivary impregnation could influence the physicochemical properties of rice boluses at the swallowing threshold. These factors should be carefully considered in future in vitro digestion studies of carbohydrate-based food products.


Assuntos
Mastigação , Oryza , Deglutição/fisiologia , Humanos , Hidrólise , Mastigação/fisiologia , Oryza/química , Amido/química
15.
Bioresour Technol ; 364: 127915, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089128

RESUMO

Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.

16.
Int J Biol Macromol ; 222(Pt A): 438-447, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162530

RESUMO

Depolysaccharide residues of edible fungus Pleurotus eryngii (dePSR-Pe), a mushroom industry waste, have abundant cellulose. In this study, the cellulose nanocrystals of P. eryngii (PeCNs) were extracted by hydrochloric acid. Results showed that the length of PeCNs is 469 ± 76.41 nm with a high aspect ratio of 40-100 and needle morphology. The structural characterization revealed that PeCNs had good thermal stability (approach 300 °C) and high crystallinity (84.2 %). An O/W Pickering emulsion stabilized with PeCNs was prepared to inhibit lipid oxidation and improve the loading capacity of triterpenes of P. coco. Unimodal size distribution of emulsion droplets was obtained under an optimized aqueous-phase condition to form a metastable emulsion, regardless of varying oil-water volume ratio <50/50. In vitro digestion study suggested that triterpenes-loaded Pickering emulsion had 1-3 times higher drug stability than bulk oil. These metastable Pickering emulsions call for fewer nanoparticles and provide a new strategy for the industry application of cellulose nanocrystals at less cost.


Assuntos
Nanopartículas , Triterpenos , Emulsões/química , Celulose/química , Nanopartículas/química , Água/química
17.
J Hazard Mater ; 437: 129350, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35749896

RESUMO

Antibiotics accumulate in soils via various agricultural activities, endangering soil biota that play fundamental roles in maintaining agroecosystem function. However, the effects of land-use heterogeneity on soil biota tolerance to antibiotic stresses are not well understood. In this study, we explored the relationships between antibiotic residues, bacterial communities, and earthworm populations in areas with different land-use types (forest, maize, and peanut fields). The results showed that antibiotic levels were generally higher in maize and peanut fields than in forests. Furthermore, land use modulated the effects of antibiotics on soil bacterial communities and earthworm populations. Cumulative antibiotic concentrations in peanut fields were negatively correlated with bacterial diversity and earthworm abundance, whereas no significant correlations were detected in maize fields. In contrast, antibiotics improved bacterial diversity and richness in forest soils. Generally, earthworm populations showed stronger tolerance to antibiotics than did soil bacterial communities. Agricultural land use differentially modified the responses of the soil bacterial community and earthworm population to antibiotic contamination, and earthworms might provide an alternative for controlling antibiotic contamination.


Assuntos
Oligoquetos , Solo , Agricultura/métodos , Animais , Antibacterianos/farmacologia , Bactérias , Biota , Oligoquetos/fisiologia , Solo/química , Microbiologia do Solo
18.
Int J Biol Macromol ; 207: 611-621, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247431

RESUMO

A new easy-dissolved Tremella fuciformis gum (TFG) from fruiting body was investigated in detail from three aspects: physicochemical characteristics, rheological behavior and in vitro digestion behavior. The results showed that TFG consisted of 73.9% polysaccharides, exhibiting easy solubility in water and good colloidal characteristics and stability. The physical and chemical treatments could decrease the apparent viscosity of TFG solution. The antioxidation activity of TFG remained constant at each static in vitro digestion phase, revealing that this gum could be used as a potential food thickener and antioxidant. The digestion behavior of TFG was also determined using a dynamic in vitro digestive system, DIVRS-II. The results demonstrated that the digestion behavior of TFG should be attributed to the morphology of digestive tracts, continuous secreting and continuous emptying. The antitussive effect of TFG was related to the increase in serum IL-10 content.


Assuntos
Basidiomycota , Antioxidantes/química , Antioxidantes/farmacologia , Basidiomycota/química , Digestão , Polissacarídeos/química , Viscosidade
19.
Front Microbiol ; 13: 787628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173699

RESUMO

The effects of biological factors on the vegetative growth process of mushrooms remain largely unexplored. We investigated the bacterial community in different growth stages of Pleurotus eryngii by high-throughput sequencing technology to explore the relationship between interacting bacteria and the growth and development of P. eryngii. We found significant variances in mushroom interacting association bacteria (MIAB) compositions among the samples from different growth stages, and 410 genera were identified. The bacteria in the full-bag and post-ripe stages were shifted to the biocontrol and growth-promotion ones. The mushroom growth-promoting bacteria (MGPB) were also isolated successfully and identified as B. cereus Bac1. The growth speed and density of mycelial pellets of P. eryngii, and activities of two exoenzymes (laccase and amylase), were analyzed by adding the different volumes of cell-free fermentation broth of B. cereus Bac1 to fungal culture media. The results showed that when a 5 mL cell-free fermentation broth was used, the growth speed of P. eryngii hyphae was enhanced by 1.15-fold over the control and reached 0.46 mm/h. The relative activity of laccase and amylase was increased by 26.9 and 43.83%. Our study revealed that the abundant interacting bacteria coexist with P. eryngii hyphae. Moreover, the abundance of some bacteria exhibiting a positive correlation with the growth periods of their host fungi can effectively promote the growth of the host, which will provide technical supports on the high-efficiency production of P. eryngii in factory cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...