Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39237260

RESUMO

OBJECTIVE: Pancreatic cancer is an incurable malignant disease with extremely poor prognosis and a complex tumor microenvironment. We sought to characterize the role of Annexin A1 (ANXA1) in pancreatic cancer, including its ability to promote efferocytosis and antitumor immune responses. METHODS: The tumor expression of ANXA1 and cleaved Caspase-3 (c-Casp3) and numbers of tumor-infiltrating CD68+ macrophages in 151 cases of pancreatic cancer were examined by immunohistochemistry and immunofluorescence. The role of ANXA1 in pancreatic cancer was investigated using myeloid-specific ANXA1-knockout mice. The changes in tumor-infiltrating immune cell populations induced by ANXA1 deficiency in macrophages were assessed by single-cell RNA sequencing and flow cytometry. RESULTS: ANXA1 expression in pancreatic cancer patient samples correlated with the number of CD68+ macrophages. The percentage of ANXA1+ tumor-infiltrating macrophages negatively correlated with c-Casp3 expression and was significantly associated with worse survival. In mice, myeloid-specific ANXA1 deficiency inhibited tumor growth and was accompanied by the accumulation of apoptotic cells in pancreatic tumor tissue caused by inhibition of macrophage efferocytosis, which was dependent on cGAS-STING pathway-induced type I interferon signaling. ANXA1 deficiency significantly remodeled the intratumoral lymphocyte and macrophage compartments in tumor-bearing mice by increasing the number of effector T cells and pro-inflammatory macrophages. Furthermore, combination therapy of ANXA1 knockdown with gemcitabine and anti-programmed cell death protein-1 antibody resulted in synergistic inhibition of pancreatic tumor growth. CONCLUSION: This research uncovers a novel role of macrophage ANXA1 in pancreatic cancer. ANXA1-mediated regulation of efferocytosis by tumor-associated macrophages promotes antitumor immune response via STING signaling, suggesting potential treatment strategies for pancreatic cancer.


Assuntos
Anexina A1 , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Anexina A1/metabolismo , Anexina A1/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Feminino , Masculino , Camundongos Knockout , Eferocitose
2.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373665

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Imunidade Inata , Camundongos , Animais , Interleucina-33 , Interleucina-13 , Interleucina-5 , Simulação de Acoplamento Molecular , Linfócitos/metabolismo , Pulmão , Inflamação/tratamento farmacológico , Inflamação/patologia , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Imunoglobulina E , Ovalbumina/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA