Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
Behav Sci (Basel) ; 14(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38247693

RESUMO

Flexibly and actively updating expectations based on feedback is crucial for navigating daily life. Previous research has shown that people with schizophrenia (PSZ) have difficulty adjusting their expectations. However, there are studies suggesting otherwise. To explore this further, we used a novel trial-based expectation updating paradigm called attribute amnesia. In the task, the participants needed to report the location of a target stimulus among distractors in pre-surprise trials. In the surprise trial, they were unexpectedly asked to report the identity of the target before reporting its location. Afterward, control trials were conducted whereby the participants were asked the same questions as in the surprise trial. Notably, the surprise trial and control trials were nearly identical, except that the participants expected to be asked about identity information in the control trials but not in the surprise trial. Thus, an improvement in identity reporting accuracy in the control trials in comparison with the surprise trial indicated active updating of expectations. In the current study, a total of 63 PSZ and 60 healthy control subjects (HCS) were enrolled. We found that both the PSZ and the HCS were unable to report information that they had fully attended to (i.e., identity) in the surprise trial. However, both groups showed a significant improvement in reporting identity information even in the first control trial. Critically, there was no significant difference in the magnitude of improvement between the two groups. The current findings indicate that PSZ have the ability to update their expectations as quickly and flexibly as HCS, at least in the context of the current task. The possible factors that might contribute to the discrepancy regarding expectation updating are discussed.

3.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284990

RESUMO

Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Pulmão , Receptores Proteína Tirosina Quinases , Proteínas de Fusão Oncogênica/genética
5.
Adv Sci (Weinh) ; 11(4): e2306157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032126

RESUMO

Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Humanos , Animais , Sistemas CRISPR-Cas/genética , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Insetos
6.
Jt Dis Relat Surg ; 35(1): 20-26, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108162

RESUMO

OBJECTIVES: This study aims to investigate the high-risk factors for osteonecrosis of the femoral head (ONFH) after internal fixation with multiple cannulated compression screws for adult femoral neck fractures and to construct a prediction model. PATIENTS AND METHODS: Between from January 2012 and December 2020, a total of 268 patients (138 males, 130 females; mean age: 53±10 years; range, 23 to 70 years) with ONFH who had complete follow-up data were included. Closed reduction in combination with open reduction were performed. All patients received internal fixation with multiple cannulated compression screws and were assigned to ONFH and non-ONFH groups. Logistic regression model was utilized to identify independent risk factors for postoperative ONFH, followed by constructing a nomogram prediction model. The predictive ability of the model was evaluated by receiver operating characteristic curve, Hosmer-Lemeshow test, and calibration curve. RESULTS: Multivariate analysis revealed that older age (odds ratio [OR]: 2.307, 95% confidence interval [CI]: 1.295-4.108], Charlson Comorbidity Index (CCI) ≥2 (OR: 2.214, 95% CI: 1.035-4.739), fracture displacement (OR: 2.426, 95% CI: 1.122-5.247), unsatisfactory reduction (OR: 2.629, 95% CI: 1.275-5.423), postoperative removal of internal fixation implant (OR: 2.200, 95% CI: 1.051-4.604) were independent risk factors for postoperative ONFH (p<0.05). The nomogram prediction model constructed based on these clinical characteristics showed high predictive value (AUC=0.807) and consistency (p>0.05). CONCLUSION: Age, comorbidity index, fracture type, reduction quality and postoperative removal of internal fixation implant are of utmost importance for postoperative ONFH in patients with femoral neck fractures. The established nomogram prediction model can accurately predict the occurrence of postoperative ONFH.


Assuntos
Fraturas do Colo Femoral , Osteonecrose , Masculino , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Cabeça do Fêmur , Osteonecrose/etiologia , Osteonecrose/cirurgia , Fatores de Risco , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/efeitos adversos
7.
Cognition ; 238: 105488, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178591

RESUMO

The study sought to investigate whether and how expectation violation can modulate attention using the exogenous spatial cueing paradigm, under the theoretical framework of the Memory Encoding Cost (MEC) model. The MEC proposes that exogenous spatial cueing effects are mainly driven by a combination of two distinct mechanisms: attentional facilitation triggered by the presence of an abrupt cue, and attentional suppression induced by memory encoding of the cue. In current experiments, participants needed to identify a target letter that was sometimes preceded by a peripheral onset cue. Various types of expectation violation were introduced by regulating the probability of cue presentation (Experiments 1 & 5), the probability of cue location (Experiments 2 & 4), and the probability of irrelevant sound presentation (Experiment 3). The results showed that expectation violation could enhance the cueing effect (valid vs. invalid cue) in some cases. More crucially, all experiments consistently observed asymmetrical modulation of expectation violation on the cost (invalid vs. neutral cue) and benefit (valid vs. neutral cue) effects: Expectation violation increased the cost effects while did not modulate or decreased (or even reversed) the benefit effects. Furthermore, Experiment 5 provided direct evidence that violation of expectations could enhance the memory encoding of a cue (e.g., color) and this memory advantage could manifest quickly in the early stages of the experiment. The MEC better explains these findings than some traditional models like the spotlight: Expectation violation can both enhance the attentional facilitation of the cue and memory encoding of irrelevant cue information. These findings suggest that expectation violation has a general adaptive function in modulating the attention selectivity.


Assuntos
Sinais (Psicologia) , Motivação , Humanos , Tempo de Reação/fisiologia , Atenção/fisiologia , Probabilidade
8.
Behav Sci (Basel) ; 13(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37232663

RESUMO

Recent research has extensively investigated working memory (WM)-guided attention, which is the phenomenon of attention being directed towards information in the external environment that matches the content stored in WM. While prior studies have focused on the potential influencing factors of WM-guided attention, little is known about the nature of it. This attention system exhibits characteristics of two classical distinct attention systems: exogenous attention and endogenous attention, as it can operate automatically like exogenous attention yet persist for a long time and be modulated by cognitive resources like endogenous attention. Thus, the current study aimed to explore the mechanism of WM-guided attention by testing whether it competed with exogenous attention, endogenous attention, or both. Two experiments were conducted within a classic WM-guided attention paradigm. Experiment 1 included an exogenous cue and revealed an interaction between WM-guided attention and exogenous attention. Experiment 2 replaced the exogenous cue with an endogenous cue and demonstrated that endogenous attention had no impact on WM-guided attention. These findings indicate that WM-guided attention shares mechanisms with exogenous attention to some extent while operating in parallel with endogenous attention.

9.
ISME Commun ; 3(1): 38, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185811

RESUMO

The inter-individual variations of gut microbiome contribute to the different responses toward drug therapy among populations, developing a reliable ex vivo culture method for mixed bacteria is the urgent need for predicting personal reaction to drug therapy. Unfortunately, very few attentions have been paid to the bias that could be introduced during the culture process for mixed bacteria. Here we systemically evaluated the factors that may affect the outcomes of cultured bacteria from human feces. We demonstrated that inter-individual difference of host gut microbiome was the main factor affecting the outcomes of cultured bacteria, followed by the culture medium and time point. We further optimized a new medium termed GB based on our established multi-dimensional evaluation method, which could mimic the status of in situ host gut microbiome to the highest extent. Finally, we assessed the inter-individual metabolism by host gut microbiome from 10 donors on three frequently used clinical drugs (aspirin, levodopa and doxifluridine) based on the optimized GB medium. Our results revealed obvious variation in drug metabolism by microbiome from different donors, especially levodopa and doxifluridine. This work suggested the optimized culture medium had the potential for exploring the inter-individual impacts of host gut microbiome on drug metabolism.

10.
Front Plant Sci ; 14: 1184276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123865

RESUMO

Grain chalkiness is the main factor determining the market value of rice. Reducing chalkiness is an important breeding goal for genetic improvement of high quality rice. Identification of QTLs or genes controlling chalkiness is the prerequisite for molecular breeding in rice. Here, we conducted a genome-wide association study to identify QTLs associated with grain chalkiness including percentage of grains with chalkiness (PGWC) and degree of endosperm chalkiness (DEC) in 450 rice accessions consisting of 300 indica and 150 japonica rice in two environments. A total of 34 QTLs were identified, including 14 QTLs for PGWC and 20 QTLs for DEC. Among them, seven QTLs were commonly identified in two environments, and eight QTLs were simultaneously related to two traits. Based on the haplotype analysis, LD decay analysis, RNA-sequencing, qRT-PCR confirmation and haplotype comparisons, four genes (LOC_Os10g36170, LOC_Os10g36260, LOC_Os10g36340 and LOC_Os10g36610) were considered as the candidate genes for qDEC-10c1w,2wj , which could be identified in both environments and had the most significant p-value among the newly identified QTLs. These results provided new insight into the genetic basis of grain chalkiness and gene resources for improving quality by molecular breeding in rice.

11.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046850

RESUMO

We had previously shown that THY1 (CD90) is a tumor suppressor in nasopharyngeal carcinoma (NPC) and that its down-regulation and loss of expression are associated with tumor metastasis, yet the mechanism leading to such effects remains unknown. In this study we show that tumor invasion could be suppressed by THY1 via adherens junction formation in a few NPC cell lines, and knockdown of THY1 would disrupt this cell-cell adhesion phenotype. Mechanistically, the activity of the SRC family kinase (SFK) member, SRC, and canonical Wnt signaling were dramatically reduced when THY1 was constitutively expressed. Previous studies by others have found that high levels of SRC activity in NPCs are associated with EMT and a poor prognosis. We hypothesized that THY1 can suppress tumor invasion in NPC via inhibition of SRC. By gene silencing of SRC, we found that the in vitro NPC cell invasion was significantly reduced and adherens junctions were restored. Through proteomic analysis, we identified that platelet-derived growth factor receptor ß (PDGF-Rß) and protein tyrosine phosphatase nonreceptor type 22 (PTPN22) are novel and potential binding partners of THY1, which were subsequently verified by co-immunoprecipitation (co-IP) analysis. The ligand of PDGF-Rß (PDGF-BB) could highly induce SRC activation and NPC cell invasion, which could be almost completely suppressed by THY1 expression. On the other hand, the PTPN22 siRNA could enhance both the SRC activities and the cell invasion and could also disrupt the adherens junctions in the THY1-expressing NPC cells; the original THY1-induced phenotypes were reverted when the PTPN22 expression was reduced. Together, our results identified that PTPN22 is essential for THY1 to suppress cell invasion and SRC activity, maintain tight adherens junctions, and prevent NPC metastasis. These results suggested that PDGF-Rß and SRC can be used as drug targets for suppressing NPC metastasis. Indeed, our in vivo assay using the SRC inhibitor KX2-391, clearly showed that inhibition of SRC signaling can prevent the metastasis of NPC, indicating that targeting SRC can be a promising approach to control the NPC progression.

12.
Theranostics ; 13(2): 458-471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632221

RESUMO

Nasopharyngeal carcinoma (NPC) is a diverse cancer with no well-defined tumor antigen, associated with oncogenic Epstein-Barr Virus (EBV), and with usually late-stage diagnosis and survival <40%. Current radiotherapy and chemotherapy have low effectiveness and cause adverse effects, which calls for the need of new therapy. In this regard, adoptive immunotherapy using γδ T cells has potential, but needs to be coupled with butyrophilin 2A1 and 3A1 protein expression to achieve tumoricidal effect. Methods: Human γδ T cells were expanded (with Zol or PTA) and used for cytotoxicity assay against NPC cells, which were treated with the EBV EBNA1-targeting peptide (L2)P4. Effect of (L2)P4 on BTN2A1/BTN3A1 expression in NPC cells was examined by flow cytometry and Western blot. An NPC-bearing NSG mice model was established to test the effectiveness of P4 and adoptive γδ T cells. Immunofluorescence was performed on NPC tissue sections to examine the presence of γδ T cells and expression of BTN2A1 and BTN3A1. EBV gene expression post-(L2)P4 treatment was assessed by qRT-PCR, and the relationship of LMP1, NLRC5 and BTN2A1/BTN3A1 was examined by transfection, reporter assay, Western blot, and inhibition experiments. Results: Zol- or PTA-expanded the Vδ2 subset of γδ T cells that exerted killing against certain NPC cells. (L2)P4 reactivates latent EBV, which increased BTN2A1 and BTN3A1 expression and conferred higher susceptibility towards Vδ2 T cells cytotoxicity in vitro, as well as enhanced tumor regression in vivo by adoptive transfer of Vδ2 T cells. Mechanistically, (L2)P4 induced EBV LMP1, leading to IFN-γ/p-JNK and NLRC5 activation, and subsequently stimulated the expression of BTN2A1 and BTN3A1. Conclusions: This study demonstrated the effectiveness of using the EBV-targeting probe (L2)P4 and adoptive γδ T cells as a promising combinatorial immunotherapy against NPC. The identification of the LMP1-IFN-γ/p-JNK-NLRC5-BTN2A1/BTN3A1 axis may lead to new insight and therapeutic targets against NPC and other EBV+ tumors.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Antígenos CD , Butirofilinas , Infecções por Vírus Epstein-Barr/complicações , Peptídeos e Proteínas de Sinalização Intracelular , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/virologia , Imunoterapia
13.
Genome Biol ; 24(1): 19, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703158

RESUMO

BACKGROUND: A pangenome aims to capture the complete genetic diversity within a species and reduce bias in genetic analysis inherent in using a single reference genome. However, the current linear format of most plant pangenomes limits the presentation of position information for novel sequences. Graph pangenomes have been developed to overcome this limitation. However, bioinformatics analysis tools for graph format genomes are lacking. RESULTS: To overcome this problem, we develop a novel strategy for pangenome construction and a downstream pangenome analysis pipeline (PSVCP) that captures genetic variants' position information while maintaining a linearized layout. Using PSVCP, we construct a high-quality rice pangenome using 12 representative rice genomes and analyze an international rice panel with 413 diverse accessions using the pangenome as the reference. We show that PSVCP successfully identifies causal structural variations for rice grain weight and plant height. Our results provide insights into rice population structure and genomic diversity. We characterize a new locus (qPH8-1) associated with plant height on chromosome 8 undetected by the SNP-based genome-wide association study (GWAS). CONCLUSIONS: Our results demonstrate that the pangenome constructed by our pipeline combined with a presence and absence variation-based GWAS can provide additional power for genomic and genetic analysis. The pangenome constructed in this study and the associated genome sequence and genetic variants data provide valuable genomic resources for rice genomics research and improvement in future.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Genoma , Biologia Computacional
14.
ACS Appl Mater Interfaces ; 15(1): 14-25, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35588160

RESUMO

Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.


Assuntos
Epilepsia , Tomografia Computadorizada de Emissão de Fóton Único , Camundongos , Animais , Reprodutibilidade dos Testes , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Barreira Hematoencefálica , Análise Espectral Raman/métodos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
15.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36515165

RESUMO

Flowering time is an important agronomic trait affecting crop yield. FCS-LIKE ZINC FINGER (FLZ) proteins are plant-specific regulatory proteins that are involved in multiple biological processes. However, their roles in plant flowering time control have not been clarified. Here, we report that OsFLZ2 is a negative regulator of rice flowering time. OsFLZ2 delays flowering by repressing the expression of key floral integrator genes. Biochemical assays showed OsFLZ2 physically interacts with OsMADS51, a flowering activator under short-day (SD) conditions. Both OsFLZ2 and OsMADS51 are highly expressed in rice leaves before floral transition under natural SD conditions, and their proteins are colocalized in the nucleus. Co-expression of OsFLZ2 can destabilize OsMADS51 and weaken its transcriptional activation of the downstream target gene Early heading date 1 (Ehd1). Taken together, these results indicate that OsFLZ2 can interfere with the function of OsMADS51 to fine-tune rice flowering time.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365290

RESUMO

The head milled rice rate (HMRR) is the most important trait of milling quality, which affects the final yield and quality of rice. However, few genes related to HMRR have been identified and the regulatory mechanism of HMRR remains elusive. In this study, we performed a comparative analysis integrating the transcriptome sequencing of developing seeds at the grain-filling stage and a metabolome analysis of brown rice between two groups of accessions with contrasting performances in HMRR. A total of 768 differentially expressed genes (DEGs) were identified between the transcriptome profiles of low-HMRR and high-HMRR accessions. In comparison to the high-HMRR accessions, 655 DEGs were up-regulated in the low-HMRR accessions, which was 4.79 folds higher than the number of down-regulated genes. These up-regulated DEGs were enriched in various metabolic and biosynthetic processes, oxidation reduction, phosphorylation, ion transport and ATP-related processes. However, the 113 down-regulated DEGs in the low-HMRR accessions were concentrated in carbohydrate metabolic processes, cell-death-related processes and defense response. Among the 30 differential metabolites, 20 and 10 metabolites were down-/up-regulated, respectively, in the accessions with low HMRR. In addition, 10 differential metabolites, including five metabolites of the shikimate pathway and five metabolites of the pyruvate pathway, were integrated into two separate pathways, starting from sucrose. Our global analysis of HMRR provides an invaluable resource for a better understanding of the molecular mechanism underlying the genetic regulation of HMRR.

17.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36231007

RESUMO

Genome editing technology has become one of the hottest research areas in recent years. Among diverse genome editing tools, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins system (CRISPR/Cas system) has exhibited the obvious advantages of specificity, simplicity, and flexibility over any previous genome editing system. In addition, the emergence of Cas9 mutants, such as dCas9 (dead Cas9), which lost its endonuclease activity but maintains DNA recognition activity with the guide RNA, provides powerful genetic manipulation tools. In particular, combining the dCas9 protein and transcriptional activator to achieve specific regulation of gene expression has made important contributions to biotechnology in medical research as well as agriculture. CRISPR/dCas9 activation (CRISPRa) can increase the transcription of endogenous genes. Overexpression of foreign genes by traditional transgenic technology in plant cells is the routine method to verify gene function by elevating genes transcription. One of the main limitations of the overexpression is the vector capacity constraint that makes it difficult to express multiple genes using the typical Ti plasmid vectors from Agrobacterium. The CRISPRa system can overcome these limitations of the traditional gene overexpression method and achieve multiple gene activation by simply designating several guide RNAs in one vector. This review summarizes the latest progress based on the development of CRISPRa systems, including SunTag, dCas9-VPR, dCas9-TV, scRNA, SAM, and CRISPR-Act and their applications in plants. Furthermore, limitations, challenges of current CRISPRa systems and future prospective applications are also discussed.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Plantas/genética , RNA Guia de Cinetoplastídeos , Ativação Transcricional/genética
18.
Front Plant Sci ; 13: 976669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119573

RESUMO

High seedling vigor can improve the ability to compete against weeds and flooding at the seedling stage and is essential for the direct seeding of rice. Early shoot length is an important performance index in seedling vigor evaluation. However, information on the identity of rice germplasm with high seedling vigor, and the genetic basis of seedling vigor are not well understood. In this study, we have conducted a genome-wide association study using 302 international diverse rice accessions from the Rice Diversity Panel 2. Six quantitative trait loci (QTLs) were found to associate with shoot length (SL). The locus qSL2 was further analyzed for candidate gene characterization. We identified OsCPS1, which encodes CDP synthase and functions in GA (Gibberellins) biosynthesis in rice, exhibits differential expression between long and short SL accessions. Using the Nipponbare genome sequence as the reference, we identified a 36 bp deletion in the 5' UTR of OsCPS1 in long SL accessions, which is absent in short SL accessions. GA content analysis showed that the levels of bioactive GA1 and GA4 are considerably higher in long SL accessions than in short SL accessions. Genome-wide gene expression analysis indicated the expression of some photosynthesis genes is higher in long SL accessions than in short SL accessions. In contrast, genes involved in ABA (Abscisic Acid)-activated signal pathway showed lower expression in long SL accessions. Population analysis across wild rice, indica and japonica, suggested that OsCPS1 may be under selection in japonica during domestication. The results suggest that OsCPS1 is a candidate gene underlying qSL2. These data provide a promising source for candidate genetic variation associated with seedling vigor, with practical applications in rice breeding.

19.
Mol Phylogenet Evol ; 177: 107606, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35952837

RESUMO

After the merger of the former Taxodiaceae and Cupressaceae s.s., currently the conifer family Cupressaceae (sensu lato) comprises seven subfamilies and 32 genera, most of which are important components of temperate and mountainous forests. With the exception of a recently published genus-level phylogeny of gymnosperms inferred from sequence analysis of 790 orthologs, previous phylogenetic studies of Cupressaceae were based mainly on morphological characters or a few molecular markers, and did not completely resolve the intergeneric relationships. In this study, we reconstructed a robust and well-resolved phylogeny of Cupressaceae represented by all 32 genera, using 1944 genes (Orthogroups) generated from transcriptome sequencing. Reticulate evolution analyses detected a possible ancient hybridization that occurred between ancestors of two subclades of Cupressoideae, including Microbiota-Platycladus-Tetraclinis (MPT) and Juniperus-Cupressus-Hesperocyparis-Callitropsis-Xanthocyparis (JCHCX), although both concatenation and coalescent trees are highly supported. Moreover, divergence time estimation and ancestral area reconstruction indicate that Cupressaceae very likely originated in Asia in the Triassic, and geographic isolation caused by continental separation drove the vicariant evolution of the two subfamilies Cupressoideae and Callitroideae in the northern and southern hemispheres, respectively. Evolutionary analyses of some morphological characters suggest that helically arranged linear-acicular leaves and imbricate bract-scale complexes represent ancestral states, and the shift from linear-acicular leaves to scale-like leaves was associated with the shift from helical to decussate arrangement. Our study sheds new light on phylogeny and evolutionary history of Cupressaceae, and strongly suggests that both dichotomous phylogenetic and reticulate evolution analyses be conducted in phylogenomic studies.


Assuntos
Cupressaceae , Juniperus , Cupressaceae/anatomia & histologia , Cupressaceae/genética , Cycadopsida , Hibridização Genética , Filogenia
20.
Zool Res ; 43(5): 805-812, 2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35993132

RESUMO

The divergence and continuous evolution of plants and animals contribute to ecological diversity. Promoters and transcription factors (TFs) are key determinants of gene regulation and transcription throughout life. However, the evolutionary trajectories and relationships of promoters and TFs are still poorly understood. Here, we conducted extensive analysis of large-scale multi-omics sequences in 420 animal species and 223 plant species spanning nearly a billion years of evolutionary history. Results showed that promoter GC-content and TF isoelectric points, as features/signatures that accompany long biological evolution, exhibited increasing growth in animal cells but a decreasing trend in plant cells. Furthermore, the evolutionary trajectories of promoter and TF signatures in the animal kingdom provided further evidence that Mammalia as well as Aves evolved directly from the ancestor Reptilia. The strong correlation between promoter and TF signatures indicates that promoters and TFs formed antagonistic coevolution in the animal kingdom, but mutualistic coevolution in the plant kingdom. The distinct coevolutionary patterns potentially drive the plant-animal divergence,divergent evolution and ecological diversity.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Aves/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...