Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816297

RESUMO

Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.


Assuntos
Catecóis , Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Hidrogéis/química , Catecóis/química , Humanos , Impressão Tridimensional , Materiais Biocompatíveis/química , Adesividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...