Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 31(12): 1956-1958, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38096789

RESUMO

In this issue of Cell Host and Microbe, Meyer et al. explore the effects of host history on the inheritance of the plant microbiome. They find that transmission from the same plant species resulted in microbiota specialization, while transmission from a different species resulted in host generalism.


Assuntos
Microbiota , Plantas
2.
Microbiol Spectr ; : e0151822, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719234

RESUMO

The amphibian fungal skin disease Batrachochytrium dendrobatidis (Bd) has caused major biodiversity losses globally. Several experimental trials have tested the use of Janthinobacterium lividum to reduce mortality due to Bd infections, usually in single-strain amendments. It is well-characterized in terms of its anti-Bd activity mechanisms. However, there are many other microbes that inhibit Bd in vitro, and not all experiments have demonstrated consistent results with J. lividum. We used a series of in vitro assays involving bacterial coculture with Bd lawns, bacterial growth tests in liquid broth, and Bd grown in bacterial cell-free supernatant (CFS) to determine: (i) which skin bacteria isolated from a locally endangered amphibian, namely, the Colorado boreal toad (Anaxyrus boreas boreas), are able to inhibit Bd growth; (ii) whether multistrain combinations are more effective than single-strains; and (iii) the mechanism behind microbe-microbe interactions. Our results indicate that there are some single strain and multistrain probiotics (especially including strains from Pseudomonas, Chryseobacterium, and Microbacterium) that are potentially more Bd-inhibitive than is J. lividum alone and that some combinations may lead to a loss of inhibition, potentially through antagonistic metabolite effects. Additionally, if J. lividum continues being developed as a wild boreal toad probiotic, we should investigate it in combination with Curvibacter CW54D, as they inhibited Bd additively and grew at a higher rate when combined than did either alone. This highlights the fact that combinations of probiotics function in variable and unpredictable ways as well as the importance of considering the potential for interactions among naturally resident host microbiota and probiotic additions. IMPORTANCE Batrachochytrium dendrobatidis (Bd) is a pathogen that infects amphibians globally and is causing a biodiversity crisis. Our research group studies one of the species affected by Bd, namely, the Colorado boreal toad (Anaxyrus boreas boreas). Many researchers focus their studies on one probiotic bacterial isolate called Janthinobacterium lividum, which slows Bd growth in lab cultures and is currently being field tested in Colorado boreal toads. Although promising, J. lividum is not consistently effective across all amphibian individuals or species. For Colorado boreal toads, we addressed whether there are other bacterial strains that also inhibit Bd (potentially better than does J. lividum) and whether we can create two-strain probiotics that function better than do single-strain probiotics. In addition, we evaluate which types of interactions occur between two-strain combinations and what these results mean in the context of adding a probiotic to an existing amphibian skin microbiome.

3.
Curr Opin Plant Biol ; 71: 102316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442442

RESUMO

Engineering plant microbiomes has the potential to improve plant health in a rapid and sustainable way. Rapidly changing climates and relatively long timelines for plant breeding make microbiome engineering an appealing approach to improving food security. However, approaches that have shown promise in the lab have not resulted in wide-scale implementation in the field. Here, we suggest the use of an integrated approach, combining mechanistic molecular and genetic knowledge, with ecological and evolutionary theory, to target knowledge gaps in plant microbiome engineering that may facilitate translatability of approaches into the field. We highlight examples where understanding microbial community ecology is essential for a holistic understanding of the efficacy and consequences of microbiome engineering. We also review examples where understanding plant-microbe evolution could facilitate the design of plants able to recruit specific microbial communities. Finally, we discuss possible trade-offs in plant-microbiome interactions that should be considered during microbiome engineering efforts so as not to introduce off-target negative effects. We include classic and emergent approaches, ranging from microbial inoculants to plant breeding to host-driven microbiome engineering, and address areas that would benefit from multidisciplinary approaches.


Assuntos
Microbiota , Melhoramento Vegetal , Plantas/genética , Microbiota/genética , Rizosfera , Microbiologia do Solo
4.
Appl Environ Microbiol ; 88(5): e0160421, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044804

RESUMO

Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity may prevent infection by pathogens through sampling effects and niche complementarity, but an alternative hypothesis may be that microbial biomass is confounded with diversity and that host-associated biofilms are deterring pathogen establishment through space preemption. In this study, we use the amphibian system as a model for host-microbe-pathogen interactions to ask two questions: (i) is bacterial richness confounded with biofilm thickness or cell density, and (ii) to what extent do biofilm thickness, cell density, and bacterial richness each deter the establishment of the amphibian fungal pathogen Batrachochytrium dendrobatidis? To answer these questions, we built a custom biofilm microcosm that mimics the host-environment interface by allowing nutrients to diffuse out of a fine-pore biofilm scaffolding. This created a competitive environment in which bacteria and the fungal pathogen compete for colonization space. We then challenged bacterial biofilms ranging in community richness, biofilm thickness, bacterial cell density, and B. dendrobatidis (also known as Bd)-inhibitory metabolite production with live B. dendrobatidis zoospores to determine how B. dendrobatidis establishment success on membranes varies. We found that biofilm thickness and B. dendrobatidis-inhibitory isolate richness work in complement to reduce B. dendrobatidis establishment success. This work underscores that physical aspects of biofilm communities can play a large role in pathogen inhibition, and in many studies, these traits are not studied. IMPORTANCE Our finding highlights the fact that diversity, as measured through 16S rRNA gene sequencing, may obscure the true mechanisms behind microbe-mediated pathogen defense and that physical space occupation by biofilm-forming symbionts may significantly contribute to pathogen protection. These findings have implications across a wide range of host-microbe systems since 16S rRNA gene sequencing is a standard tool used across many microbial systems. Further, our results are potentially relevant to many host-pathogen systems since host-associated bacterial biofilms are ubiquitous.


Assuntos
Quitridiomicetos , Microbiota , Anfíbios/genética , Anfíbios/microbiologia , Animais , Bactérias , Batrachochytrium , Biofilmes , Quitridiomicetos/genética , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética , Pele/microbiologia
5.
Mol Ecol ; 31(7): 2140-2156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076975

RESUMO

Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We sought to determine whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Anfíbios/microbiologia , Animais , Bactérias/genética , Batrachochytrium/genética , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária , Pele/microbiologia
6.
PLoS One ; 16(8): e0256328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411153

RESUMO

Host-associated microbes can interact with macro-organisms in a number of ways that affect host health. Few studies of host-associated microbiomes, however, focus on fungi. In addition, it is difficult to discern whether a fungal organism found in or on an ectotherm host is associating with it in a durable, symbiotic interaction versus a transient one, and to what extent the habitat and host share microbes. We seek to identify these host-microbe interactions on an amphibian, the Colorado boreal toad (Anaxyrus boreas boreas). We sequenced the ITS1 region of the fungal community on the skin of wild toads (n = 124) from four sites in the Colorado Rocky Mountains, across its physiologically dynamic developmental life stages. We also sampled the common habitats used by boreal toads: water from their natal wetland and aquatic pond sediment. We then examined diversity patterns within different life stages, between host and habitat, and identified fungal taxa that could be putatively host-associated with toads by using an indicator species analysis on toad versus environmental samples. Host and habitat were strikingly similar, with the exception of toad eggs. Post-hatching toad life stages were distinct in their various fungal diversity measures. We identified eight fungal taxa that were significantly associated with eggs, but no other fungal taxa were associated with other toad life stages compared with their environmental habitat. This suggests that although pre- and post-metamorphic toad life stages differ from each other, the habitat and host fungal communities are so similar that identifying obligate host symbionts is difficult with the techniques used here. This approach does, however, leverage sequence data from host and habitat samples to predict which microbial taxa are host-associated versus transient microbes, thereby condensing a large set of sequence data into a smaller list of potential targets for further consideration.


Assuntos
Bufonidae/microbiologia , Quitridiomicetos/isolamento & purificação , Interações entre Hospedeiro e Microrganismos/genética , Simbiose/genética , Animais , Bufonidae/genética , Quitridiomicetos/genética , Colorado , Microbiota/genética , Pele/microbiologia
7.
ISME J ; 15(5): 1372-1386, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33349654

RESUMO

Large eukaryotes support diverse communities of microbes on their surface-epibiota-that profoundly influence their biology. Alternate factors known to structure complex patterns of microbial diversity-host evolutionary history and ecology, environmental conditions and stochasticity-do not act independently and it is challenging to disentangle their relative effects. Here, we surveyed the epibiota from 38 sympatric seaweed species that span diverse clades and have convergent morphology, which strongly influences seaweed ecology. Host identity explains most of the variation in epibiont communities and deeper host phylogenetic relationships (e.g., genus level) explain a small but significant portion of epibiont community variation. Strikingly, epibiota community composition is significantly influenced by host morphology and epibiota richness increases with morphological complexity of the seaweed host. This effect is robust after controlling for phylogenetic non-independence and is strongest for crustose seaweeds. We experimentally validated the effect of host morphology by quantifying bacterial community assembly on latex sheets cut to resemble three seaweed morphologies. The patterns match those observed in our field survey. Thus, biodiversity increases with habitat complexity in host-associated microbial communities, mirroring patterns observed in animal communities. We suggest that host morphology and structural complexity are underexplored mechanisms structuring microbial communities.


Assuntos
Microbiota , Animais , Bactérias/genética , Biodiversidade , Ecologia , Filogenia
8.
Mol Ecol ; 27(8): 1966-1979, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29524281

RESUMO

Macroalgae variably promote and deter microbial growth through release of organic carbon and antimicrobial compounds into the water column. Consequently, macroalgae influence the microbial composition of the surrounding water column and biofilms on nearby surfaces. Here, we use manipulative experiments to test the hypotheses that (i) Nereocystis luetkeana and Mastocarpus sp. macroalgae alter the water column microbiota in species-specific manner, that (ii) neighbouring macroalgae alter the bacterial communities on the surface (epibiota) of actively growing Nereocystis luetkeana meristem fragments (NMFs), and that (iii) neighbours alter NMF growth rate. We also assess the impact of laboratory incubation on macroalgal epibiota by comparing each species to wild counterparts. We find strong differences between the Nereocystis and Mastocarpus epibiota that are maintained in the laboratory. Nereocystis and Mastocarpus alter water column bacterial community composition and richness in a species specific manner, but cause only small compositional shifts on NMF surfaces that do not differ by species, and do not change richness. Co-incubation with macroalgae results in significant change in abundance of fivefold more genera in the water column compared to NMF surfaces, although the direction (i.e., enrichment or reduction) of shift is generally consistent between the water and NMF surfaces. Finally, NMFs grew during the experiment, but growth did not depend on the presence or identity of neighbouring macroalgae. Thus, macroalgae exhibit a strong and species-specific influence on the water column microbiota, but a much weaker influence on the epibiota of neighbouring macroalgae. Overall, these results support the idea that macroalgae surfaces are highly selective and demonstrate that modulations of macroalgal microbiota operate within an overarching paradigm of host species specificity.


Assuntos
Especificidade de Hospedeiro/genética , Microbiota/genética , Alga Marinha/microbiologia , Microbiologia da Água , Biofilmes/crescimento & desenvolvimento , Phaeophyceae/genética , Phaeophyceae/microbiologia , Rodófitas/genética , Rodófitas/microbiologia , Alga Marinha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...