Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 332020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33341882

RESUMO

Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-ß peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.


Assuntos
Especificidade de Anticorpos , Antígenos/química , Epitopos/química , Biblioteca de Peptídeos , Engenharia de Proteínas , Anticorpos de Domínio Único , Animais , Antígenos/imunologia , Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Camelus/genética , Camelus/imunologia , Epitopos/imunologia , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Relação Estrutura-Atividade
2.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

3.
Methods Mol Biol ; 1674: 37-48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28921426

RESUMO

The methylotrophic yeast Pichia pastoris has become an increasingly popular host for recombinant protein expression in recent times. MRL pioneered a glycoengineered humanized P. pastoris expression system that could produce glycoproteins with glycosylation profiles similar to mammalian systems. Therapeutic glycoproteins produced by the humanized P. pastoris platform have shown comparable folding, stability, and in vitro and in vivo efficacies in preclinical models to their counterparts produced from the CHO cells. P. pastoris offers a cost and time efficient alternative platform for therapeutic protein production. This chapter describes a protocol for using P. pastoris to produce full-length monoclonal antibodies. It covers a broad spectrum of antibody expression technologies in P. pastoris, including expression vector construction, yeast transformation, high-throughput strain selection, fermentation, and antibody purification.


Assuntos
Pichia/genética , Proteínas Recombinantes/genética , Anticorpos Monoclonais/genética , Fermentação/genética , Transformação Genética/genética
4.
PLoS One ; 8(7): e68325, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840891

RESUMO

The methylotrophic yeast, Pichiapastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of ß-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P. pastoris, thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P. pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT) family. In this report we identify and characterize the members of the P. pastoris PMT family. Like Candida albicans, P. pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively). The remaining sub-family, PMT4, has only one member (PMT4). Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P. pastoris platform as a suitable system for the production of therapeutic glycoproteins.


Assuntos
Manosiltransferases/genética , Pichia/enzimologia , Pichia/genética , Candida albicans/enzimologia , Candida albicans/genética , Técnicas de Inativação de Genes , Genes Fúngicos , Glicosilação , Manosiltransferases/metabolismo , Filogenia , Pichia/metabolismo , Polissacarídeos/metabolismo
5.
PLoS One ; 8(7): e70190, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875020

RESUMO

State-of-the-art monoclonal antibody (mAb) discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichiapastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional "half" IgGs to the cell wall of Pichiapastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichiapastoris, this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.


Assuntos
Anticorpos Monoclonais/metabolismo , Formação de Anticorpos , Pichia , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/genética , Separação Celular/métodos , Glicosilação , Humanos , Organismos Geneticamente Modificados , Biblioteca de Peptídeos , Pichia/genética , Pichia/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional
6.
PLoS One ; 8(5): e62229, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667461

RESUMO

Protein O-mannosyltransferases (PMTs) catalyze the initial reaction of protein O-mannosylation by transferring the first mannose unit onto serine and threonine residues of a nascent polypeptide being synthesized in the endoplasmic reticulum (ER). The PMTs are well conserved in eukaryotic organisms, and in vivo defects of these enzymes result in cell death in yeast and congenital diseases in humans. A group of rhodanine-3-acetic acid derivatives (PMTi) specifically inhibits PMT activity both in vitro and in vivo. As such, these chemical compounds have been effectively used to minimize the extent of O-mannosylation on heterologously produced proteins from different yeast expression hosts. However, very little is known about how these PMT-inhibitors interact with the PMT enzyme, or what structural features of the PMTs are required for inhibitor-protein interactions. To better understand the inhibitor-enzyme interactions, and to gain potential insights for developing more effective PMT-inhibitors, we isolated PMTi-resistant mutants in Pichia pastoris. In this study, we report the identification and characterization of a point mutation within the PpPMT2 gene. We demonstrate that this F664S point mutation resulted in a near complete loss of PMTi sensitivity, both in terms of growth-inhibition and reduction in O-mannosylglycan site occupancy. Our results provide genetic evidence demonstrating that the F664 residue plays a critical role in mediating the inhibitory effects of these PMTi compounds. Our data also indicate that the main target of these PMT-inhibitors in P. pastoris is Pmt2p, and that the F664 residue most likely interacts directly with the PMTi-compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Manosiltransferases/antagonistas & inibidores , Manosiltransferases/genética , Pichia/enzimologia , Acetatos/farmacologia , Substituição de Aminoácidos , Retículo Endoplasmático/metabolismo , Mutagênese , Mutação de Sentido Incorreto/genética , Pichia/genética , Plasmídeos/genética , Mutação Puntual/genética , Rodanina/farmacologia
7.
Microb Cell Fact ; 11: 91, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22748191

RESUMO

BACKGROUND: Yeast mating provides an efficient means for strain and library construction. However, biotechnological applications of mating in the methylotrophic yeast Pichia pastoris have been hampered because of concerns about strain stability of P. pastoris diploids. The aim of the study reported here is to investigate heterologous protein expression in diploid P. pastoris strains and to evaluate diploid strain stability using high cell density fermentation processes. RESULTS: By using a monoclonal antibody as a target protein, we demonstrate that recombinant protein production in both wild-type and glycoengineered P. pastoris diploids is stable and efficient during a nutrient rich shake flask cultivation. When diploid strains were cultivated under bioreactor conditions, sporulation was observed. Nevertheless, both wild-type and glycoengineered P. pastoris diploids showed robust productivity and secreted recombinant antibody of high quality. Specifically, the yeast culture maintained a diploid state for 240 h post-induction phase while protein titer and N-linked glycosylation profiles were comparable to that of a haploid strain expressing the same antibody. As an application of mating, we also constructed an antibody display library and used mating to generate novel full-length antibody sequences. CONCLUSIONS: To the best of our knowledge, this study reports for the first time a comprehensive characterization of recombinant protein expression and fermentation using diploid P. pastoris strains. Data presented here support the use of mating for various applications including strain consolidation, variable-region glycosylation antibody display library, and process optimization.


Assuntos
Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Biomassa , Diploide , Fermentação , Haploidia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
8.
Nat Biotechnol ; 23(12): 1551-5, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299520

RESUMO

The construction of synthetic cell-cell communication networks can improve our quantitative understanding of naturally occurring signaling pathways and enhance our capabilities to engineer coordinated cellular behavior in cell populations. Towards accomplishing these goals in eukaryotes, we developed and analyzed two artificial cell-cell communication systems in yeast. We integrated Arabidopsis thaliana signal synthesis and receptor components with yeast endogenous protein phosphorylation elements and new response promoters. In the first system, engineered yeast 'sender' cells synthesize the plant hormone cytokinin, which diffuses into the environment and activates a hybrid exogenous/endogenous phosphorylation signaling pathway in nearby engineered yeast 'receiver' cells. For the second system, the sender network was integrated into the receivers under positive-feedback regulation, resulting in population density-dependent gene expression (that is, quorum sensing). The combined experimental work and mathematical modeling of the systems presented here can benefit various biotechnology applications for yeast and higher level eukaryotes, including fermentation processes, biomaterial fabrication and tissue engineering.


Assuntos
Alquil e Aril Transferases/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Engenharia Genética/métodos , Isopenteniladenosina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomimética/métodos , Comunicação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Estudos de Viabilidade , Isopenteniladenosina/genética , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 101(17): 6355-60, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15096621

RESUMO

One of the important challenges in the emerging field of synthetic biology is designing artificial networks that achieve coordinated behavior in cell communities. Here we present a synthetic multicellular bacterial system where receiver cells exhibit transient gene expression in response to a long-lasting signal from neighboring sender cells. The engineered sender cells synthesize an inducer, an acyl-homoserine lactone (AHL), which freely diffuses to spatially proximate receiver cells. The receiver cells contain a pulse-generator circuit that incorporates a feed-forward regulatory motif. The circuit responds to a long-lasting increase in the level of AHL by transiently activating, and then repressing, the expression of a GFP. Based on simulation models, we engineered variants of the pulse-generator circuit that exhibit different quantitative responses such as increased duration and intensity of the pulse. As shown by our models and experiments, the maximum amplitude and timing of the pulse depend not only on the final inducer concentration, but also on its rate of increase. The ability to differentiate between various rates of increase in inducer concentrations affords the system a unique spatiotemporal behavior for cells grown on solid media. Specifically, receiver cells can respond to communication from nearby sender cells while completely ignoring communication from senders cells further away, despite the fact that AHL concentrations eventually reach high levels everywhere. Because of the resemblance to naturally occurring feed-forward motifs, the pulse generator can serve as a model to improve our understanding of such systems.


Assuntos
Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...