Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39292572

RESUMO

This work investigates the problem of efficiently learning discriminative low-dimensional (LD) representations of multiclass image objects. We propose a generic end-to-end approach that jointly optimizes sparse dictionary and convolutions for learning LOW-dimensional discriminative image representations, named SparConvLow, taking advantage of convolutional neural networks (CNNs), dictionary learning, and orthogonal projections. The whole learning process can be summarized as follows. First, a CNN module is employed to extract high-dimensional (HD) preliminary convolutional features. Second, to avoid the high computational cost of direct sparse coding on HD CNN features, we learn sparse representation (SR) over a task-driven dictionary in the space with the feature being orthogonally projected. We then exploit the discriminative projection on SR. The whole learning process is consistently treated as an end-to-end joint optimization problem of trace quotient maximization. The cost function is well-defined on the product of the CNN parameters space, the Stiefel manifold, the Oblique manifold, and the Grassmann manifold. By using the explicit gradient delivery, the cost function is optimized via a geometrical stochastic gradient descent (SGD) algorithm along with the chain rule and the backpropagation. The experimental results show that the proposed method can achieve a highly competitive performance with the state-of-the-art (SOTA) image classification, object categorization, and face recognition methods, under both supervised and semi-supervised settings. The code is available at https://github.com/MVPR-Group/SparConvLow.

2.
Materials (Basel) ; 17(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39203204

RESUMO

Continuous dynamic recrystallization (CDRX) is widely acknowledged to occur during hot forming and plays a significant role in microstructure development in alloys with moderate to high stacking fault energy. In this work, the flow stress and CDRX behaviors of the TC18 alloy subjected to hot deformation across a wide range of processing conditions are studied. It is observed that deformation leads to the formation of new low-angle grain boundaries (LAGBs). Subgrains rotate by absorbing dislocations, resulting in an increase in LAGB misorientation and the transition of some LAGBs into high-angle grain boundaries (HAGBs). The HAGBs migrate within the material, assimilating the (sub)grain boundaries. Subsequently, an internal state variable (ISV)-based CDRX model is developed, incorporating parameters such as the dislocation density, adiabatic temperature rise, subgrain rotation, LAGB area, HAGB area, and LAGB misorientation angle distribution. The values of the correlation coefficient (R), relative average absolute error (RAAE), and root-mean-square error (RMSE) between the anticipated true stress and measured stress are 0.989, 6.69%, and 4.78 MPa, respectively. The predicted outcomes demonstrate good agreement with experimental findings. The evolving trends of the subgrain boundary area under various conditions are quantitatively analyzed by assessing the changes in dynamic recovery (DRV)-eliminated dislocations and misorientation angles. Moreover, the ISV-based model accurately predicts the decreases in grain and crystallite sizes with higher strain rates and lower temperatures. The projected outcomes also indicate a transition from a stable and coarse-grained microstructure to a continuously recrystallized substructure.

3.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612209

RESUMO

Typically, in the manufacturing of GH4169 superalloy forgings, the multi-process hot forming that consists of pre-deformation, heat treatment and final deformation is required. This study focuses on the microstructural evolution throughout hot working processes. Considering that δ phase can promote nucleation and limit the growth of grains, a process route was designed, including pre-deformation, aging treatment (AT) to precipitate sufficient δ phases, high temperature holding (HTH) to uniformly heat the forging, and final deformation. The results show that the uneven strain distribution after pre-deformation has a significant impact on the subsequent refinement of the grain microstructure due to the complex coupling relationship between the evolution of the δ phase and recrystallization behavior. After the final deformation, the fine-grain microstructure with short rod-like δ phases as boundaries is easy to form in the region with a large strain of the pre-forging. However, necklace-like mixed grain microstructure is formed in the region with a small strain of the pre-forging. In addition, when the microstructure before final deformation consists of mixed grains, dynamic recrystallization (DRX) nucleation behavior preferentially depends on kernel average misorientation (KAM) values. A large KAM can promote the formation of DRX nuclei. When the KAM values are close, a smaller average grain size of mixed-grain microstructure is more conductive to promote the DRX nucleation. Finally, the interaction mechanisms between δ phase and DRX nucleation are revealed.

4.
Materials (Basel) ; 15(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36013647

RESUMO

This study aims to explore the effect of deformation parameters on microstructure evolution during the new two-stage annealing method composed of an aging treatment (AT) and a cooling recrystallization annealing treatment (CRT). Firstly, the hot compressive tests with diverse deformation parameters were finished for an initial aged deformed GH4169 superalloy. Then, the same two-stage annealing method was designed and carried out for the deformed samples. The results show that the deformation parameters mainly affect the grain microstructure during CRT by influencing the content, distribution and morphology of the δ phase after deformation. The reason for this is that there is an equilibrium of the content of the δ phase and Nb atom. When the deformation temperature is high, the complete dissolution behavior of the δ phase nuclei promotes the dispersion distribution of the δ phase with rodlike and needle-like shapes during AT. Thus, the fine and heterogeneous microstructure is obtained after annealing because the recrystallization nucleation is enhanced in those dispersed δ phases during CRT. However, when the retained content of δ phase nuclei is high after deformation, the clusters of intragranular δ phases will form during AT, resulting in the pinning of the motion for dislocation. The elimination of the mixed grain microstructure is slowed down due to the low static recrystallization (SRX) nucleation rate within the deformed grain.

5.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683328

RESUMO

The dynamic recrystallization (DRX) features and the evolution of the microstructure of a new hot isostatic pressed (HIPed) powder metallurgy (P/M) superalloy are investigated by hot-compression tests. The sensitivity of grain dimension and DRX behavior to deformation parameters is analyzed. The results reveal that the DRX features and grain-growth behavior are significantly affected by deformation conditions. The DRX process is promoted with a raised temperature/true strain or a reduced strain rate. However, the grains grow up rapidly at relatively high temperatures. At strain rates of o.1 s-1 and 1 s-1, a uniform microstructure and small grains are obtained. Due to the obvious differences in the DRX rate at various temperatures, the piecewise DRX kinetics equations are proposed to predict the DRX behavior. At the same time, a mathematical model for predicting the grain dimension and the grain growth behavior is established. To further analyze the DRX behavior and the changes in grain dimension, the hot deformation process is simulated. The developed grain-growth equation as well as the piecewise DRX kinetics equations are integrated into DEFORM software. The simulated DRX features are consistent with the test results, indicating that the proposed DRX kinetics equations and the established grain-growth model can be well used for describing the microstructure evolution. So, they are very useful for the practical hot forming of P/M superalloy parts.

6.
Materials (Basel) ; 14(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361533

RESUMO

This study takes large size samples after hot-upsetting as research objects and aims to investigate the optimization double-stage annealing parameters for improving the mechanical properties of hot-upsetting samples. The double-stage annealing treatments and uniaxial tensile tests for hot-upsetting GH4169 superalloy were finished firstly. Then, the fracture mode was also studied. The results show that the strength of hot-upsetting GH4169 superalloy can be improved by the double-stage annealing treatment, but the effect of annealing parameters on the elongation of GH4169 alloy at high temperature and room temperature is not significant. The fracture mode of annealed samples at high-temperature and room-temperature tensile tests is a mixture of shear fracture and quasi-cleavage fracture while that of hot-upsetting sample is a shear fracture. The macroscopic expressions for the two fracture modes belong to ductile fracture. Moreover, it is also found that the improvement of strength by the double-stage annealing treatment is greater than the single-stage annealing treatment. This is because the homogeneity of grains plays an important role in the improvement of strength for GH4169 superalloy when the average grain size is similar. Based on a comprehensive consideration, the optimal annealing route is determined as 900 °C × 9-12 h(water cooling) + 980 °C × 60 min(water cooling).

7.
Polymers (Basel) ; 12(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244455

RESUMO

Bio-based adhesives have low water resistance and they are less durable than synthetic adhesives, which limits their exterior applications. In this study, a bio adhesive was developed from soybean meal and larch tannin that was designed for exterior use. Phenol hydroxymethylated tannin oligomer (PHTO) was synthesized and then mixed with soybean meal flour in order to obtain a soybean meal-based adhesive (SPA). The results showed that the moisture absorption rate, residual rate, and solid content of SPA with 10 wt % PHTO (mass ratio with respect to the entire adhesive) were improved by 22.8%, 11.6%, and 6.8%, respectively, as compared with that of pure SPA. The wet shear strength of plywood with SPA with 10 wt % PHTO (boiling in 100 °C water for 3 h) was 1.04 MPa when compared with 0 MPa of pure SPA. This met the bond strength requirement of exterior-use plywood (GB/T 9846.3-2004). This improved adhesive performance was mainly due to the formation of a crosslinked structure between the PHTO and the protein and also PHTO self-crosslinking. The formaldehyde emission of the resulting plywood was the same as that of solid wood. The PHTO-modified SPA can potentially extend the applications of SPAs from interior to exterior plywood.

8.
Polymers (Basel) ; 12(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936509

RESUMO

As a byproduct from the soybean oil industry, soy meal can be reproduced into value-added products to replace formaldehyde as a plywood adhesive. However, the use of soy meal has been limited by its poor antifungal and antiseptic properties. In this work, three kinds of material, namely nano-Ag/TiO2, zinc pyrithione, and 4-cumylphenol were applied to enhance the mildew resistance of soy meal via breakdown of the cellular structure of mildew. The fungi and mold resistance, morphology, thermal properties, and mechanism of the modified soy meal were evaluated. The success of the antifungal and antiseptic properties was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The results indicated that all three kinds of material improved the fungi and mold resistance of soy meal, and sample B, which was modified with a compound of nano-Ag/TiO2 and zinc pyrithione, was the effective antifungal raw material for the soy-based adhesives. FTIR indicated that the great improvement of antifungal properties of soy meal modified with 4-cumylphenol might be caused by the reaction between COO- groups of soy protein. This research can help understand the effects of the chemical modification of nano-Ag/TiO2, zinc pyrithione, and 4-cumylphenol on soy meal, and the modified soy meal exhibits potential for utilization in the plywood adhesive industry.

9.
Polymers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416235

RESUMO

Soybean meal (SM)-based adhesive exhibited a great potential to replace petroleum-derived ones to alleviate the energy crisis and eliminate carcinogenic formaldehyde. However, the bad water resistance (caused by low crosslinking density) and inherent brittleness of SM adhesive severely hindered its application. However, improving crosslinking density is generally accompanied by a toughness reduction of the adhesive. Herein, we developed a flexible long-chain starch with a hyper-branched structure (HD), and incorporated it with SM and a crosslinking agent to prepare a novel SM adhesive. Results showed that this adhesive exhibited both excellent water resistance and enhanced toughness. The wet bond strength of plywood fabricated using this adhesive was 354.5% higher than that of SM adhesive. These achievements are because introducing HD with hyper-branched groups enhanced crosslinking density, while HD's flexible long-chain structure improved toughness of the adhesive. This HD can promote the development of tough and hydrophobic bio-based composites.

10.
Molecules ; 23(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356000

RESUMO

In this study, bromelain was used to break soy protein molecules into polypeptide chains, and triglycidylamine (TGA) was added to develop a bio-adhesive. The viscosity, residual rate, functional groups, thermal behavior, and fracture surface of different adhesives were measured. A three-ply plywood was fabricated and evaluated. The results showed that using 0.1 wt% bromelain improved the soy protein isolate (SPI) content of the adhesive from 12 wt% to 18 wt%, with viscosity remaining constant, but reduced the residual rate by 9.6% and the wet shear strength of the resultant plywood by 69.8%. After the addition of 9 wt% TGA, the residual rate of the SPI/bromelain/TGA adhesive improved by 13.7%, and the wet shear strength of the resultant plywood increased by 681.3% relative to that of the SPI/bromelain adhesive. The wet shear strength was 30.2% higher than that of the SPI/TGA adhesive, which was attributed to the breakage of protein molecules into polypeptide chains. This occurrence led to (1) the formation of more interlocks with the wood surface during the curing process of the adhesive and (2) the exposure and reaction of more hydrophilic groups with TGA to produce a denser cross-linked network in the adhesive. This denser network exhibited enhanced thermal stability and created a ductile fracture surface after the enzymatic hydrolysis process.


Assuntos
Adesivos/química , Proteínas de Soja/química , Adesivos/síntese química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Proteólise , Resistência ao Cisalhamento , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Viscosidade
11.
Polymers (Basel) ; 10(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30960834

RESUMO

To improve the performance of a soy flour (SF)-based adhesive, a low-cost hydroxymethyl melamine prepolymer (HMP) was synthesized and then used to modify the SF-based adhesive. The HMP was characterized, and the performance of the adhesive was evaluated, including its residual rate, functions, thermal stability, and fracture section. Plywood was fabricated to measure wet shear strength. The results indicated that the HMP preferentially reacted with polysaccharose in SF and formed a cross-linking network to improve the water resistance of the adhesive. This polysaccharose-based network also combined with the HMP self-polycondensation network and soy protein to form an interpenetrating network, which further improved the water resistance of the adhesive. With the addition of 9% HMP, the wet shear strength (63 °C) of the plywood was 1.21 MPa, which was 9.3 times that of the SF adhesive. With the HMP additive increased to 15%, the shear strength (100 °C) of the plywood was 0.79 MPa, which met the plywood requirement for exterior use (≥0.7 MPa) in accordance with Chinese National Standard (GB/T 9846.3-2004). With the addition of 9% and 15% HMP, the residual rates of the adhesive improved by 5.1% and 8.5%, respectively. The dense interpenetrating network structure improved the thermal stability of the resultant adhesive and created a compact fracture to prevent moisture intrusion, which further increased the water resistance of the adhesive.

12.
Carbohydr Polym ; 169: 417-425, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504164

RESUMO

In this study, an eco-friendly soy protein adhesive was developed that utilized two components from soybean meal without addition of any toxic material. A plant-based, water-soluble and inexpensive soybean soluble polysaccharide was used as the novel renewable material to combine with soy protein to produce a soy protein adhesive. Three-plywood was fabricated with the resulting adhesive, and its wet shear strength was measured. The results showed the wet shear strength of plywood bonded by the adhesive reached 0.99MPa, meeting the water resistance requirement for interior use panels. This improvement was attributed to the following reasons: (1) Combination of cross-linked soybean soluble polysaccharide and soy protein formed an interpenetrating network structure, improving the thermal stability and water resistance of the cured adhesive. (2) Adding CL-SSPS decreased the adhesive viscosity to 15.14Pas, which increased the amount of the adhesive that penetrate the wood's surface and formed more interlocks.


Assuntos
Adesivos , Polissacarídeos/química , Proteínas de Soja/química , Glycine max , Água , Madeira
13.
Polymers (Basel) ; 9(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965712

RESUMO

This study aimed to improve the bonding strength and water resistance of soy protein-based adhesives (SPAs) by modifying with larch tannin-based resins (TRs). This is especially important because of their eco-beneficial effects. The TR was characterized by Fourier Transform Infrared (FTIR) and Thermogravimetric/Derivative Thermogravimetric (TG/DTG) in order to demonstrate the formation of the self-crosslinking structure. Rheological properties, fracture morphology, solubility, and crosslinking density were characterized in detail. Three-ply poplar plywood was fabricated and the wet shear strength was measured. The experimental data showed that the addition of TR improved the moisture uptake, residual rate, and shear strength of SPA. This improvement was attributed to the crosslink reactions of TR with the relevant active functional groups of the side chains of soy protein molecules. The crosslinking structure joined with the TR self-crosslinking structure to form an interpenetrating network, which promoted a uniform and compact cured structure. The 5 wt % TR additions in the SPA was found to yield optimum results by improving the wet shear strength of the plywood by 105.4% to 1.13 MPa, which meets the interior-use plywood requirement. Therefore, the larch tannin could be applied in the modification of soy protein adhesive.

14.
Polymers (Basel) ; 9(9)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30965764

RESUMO

An eco-friendly soybean meal-based adhesive (SM adhesive) was developed by incorporating ethylene glycol diglycidyl ether (EGDE) and nanocrystalline cellulose (NCC). In order to introduce epoxy groups, NCC was modified by KH560 (denoted as MNCC). The functional groups, thermal stability, and cross section of the resultant adhesive were characterized. Three-ply plywood was fabricated to measure the dry and wet shear strength of the adhesive. The experimental results showed that the epoxy groups on MNCC reacted with the carboxyl group of SM protein molecules, forming a crosslinking network and a ductile adhesive layer. As a result, compared with the SM adhesive modified by EGDE, the thermal stability of the adhesive with MNCC was improved and the wet shear strength was increased to 1.08 MPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA