Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadn2752, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630828

RESUMO

Nonlocal effects originating from interactions between neighboring meta-atoms introduce additional degrees of freedom for peculiar characteristics of metadevices, such as enhancement, selectivity, and spatial modulation. However, they are generally difficult to manipulate because of the collective responses of multiple meta-atoms. Here, we experimentally demonstrate the nonlocal metasurface to realize the spatial modulation of dark-field emission. Plasmonic asymmetric split rings (ASRs) are designed to simultaneously excite local dipole resonance and nonlocal quasi-bound states in the continuum and spatially extended modes. With one type of unit, nonlocal effects are tailored by varying array periods. ASRs at the metasurface's edge lack sufficient interactions, resulting in stronger dark-field scattering and thus edge emission properties of the metasurface. Pixel-level spatial control is demonstrated by simply erasing some units, providing more flexibility than conventional local metasurfaces. This work paves the way for manipulating nonlocal effects and facilitates applications in optical trapping and sorting at the nanoscale.

2.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

3.
Adv Sci (Weinh) ; : e2307837, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488694

RESUMO

Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.

4.
Opt Lett ; 49(4): 961-964, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359236

RESUMO

This Letter proposes a light-field meta-lens multi-wavelength thermometry (MMT) system that is capable of modulating a full-spectrum incident radiation into four separate wavelength beams. The chromatic meta-lens is designed using finite-difference time-domain (FDTD) software to function as a filter, ensuring its ability to separate four wavelengths. The chromatic meta-lens is positioned on the back focus plane of the main lens to replace the microlens used in traditional light-field systems and simplify the overall system. After detecting the acquired wavelengths and intensities of the image on photodiodes, a raw multispectral image can be decoupled and processed using the Chameleon swarm algorithm (CSA). Four full-spectrum incident radiations corresponding to four temperature characteristic curves are detected. The high accuracy of the reverse temperature calculation enables the measurement of surface high-temperature distribution with precision.

5.
Adv Mater ; : e2310134, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38042993

RESUMO

Fluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi-dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta-lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta-lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta-lens PIV technique is proposed, where a pair of GaN meta-lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta-lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex-ring diameter is ≈1.25% experimentally validates via a Reynolds-number (Re) 2000 vortex-ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy-to-deploy technique. It enables further miniaturization and low-power systems for portable, field-use, and space-constrained PIV applications.

6.
Sci Adv ; 9(4): eadf8478, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706183

RESUMO

The sixth-generation (6G) communication technology is being developed in full swing and is expected to be faster and better than the fifth generation. The precise information transfer directivity and the concentration of signal strength are the key topics of 6G technology. We report the synthetic phase design of rotary doublet Airy beam and triplet Gaussian beam varifocal meta-devices to fully control the terahertz beam's propagation direction and coverage area. The focusing spot can be delivered to arbitrary positions in a two-dimensional plane or a three-dimensional space. The highly concentrated signal can be delivered to a specific position, and the transmission direction can be adjusted freely to enable secure, flexible, and high-directivity 6G communication systems. This technology avoids the high costs associated with extensive use of active components. 6G communication systems, wireless power transfer, zoom imaging, and remote sensing will benefit from large-scale adoption of such a technology.

7.
Adv Mater ; 35(34): e2107465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35986633

RESUMO

The optical illusion affects depth-sensing due to the limited and specific light-field information acquired by single-lens imaging. The incomplete depth information or visual deception would cause cognitive errors. To resolve this problem, an intelligent and compact depth-sensing meta-device that is miniaturized, integrated, and applicable for diverse scenes in all light levels is demonstrated. The compact and multifunction stereo vision system adopts an array with 3600 achromatic meta-lenses and a size of 1.2 × 1.2 mm2 to measure the depth over a 30 cm range with deep-learning support. The meta-lens array can act as multiple imaging lenses to collect light field information. It can also work with a light source as an active optical device to project a structured light. The meta-lens array can serve as the core functional component of a light-field imaging system under bright conditions or a structured-light projection system in the dark. The depth information in both ways can be analyzed and extracted by the convolutional neural network. This work provides a new avenue for the applications such as autonomous driving, machine vision, human-computer interaction, augmented reality, biometric identification, etc.

8.
Chem Rev ; 122(19): 15356-15413, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750326

RESUMO

Recent years have witnessed promising artificial intelligence (AI) applications in many disciplines, including optics, engineering, medicine, economics, and education. In particular, the synergy of AI and meta-optics has greatly benefited both fields. Meta-optics are advanced flat optics with novel functions and light-manipulation abilities. The optical properties can be engineered with a unique design to meet various optical demands. This review offers comprehensive coverage of meta-optics and artificial intelligence in synergy. After providing an overview of AI and meta-optics, we categorize and discuss the recent developments integrated by these two topics, namely AI for meta-optics and meta-optics for AI. The former describes how to apply AI to the research of meta-optics for design, simulation, optical information analysis, and application. The latter reports the development of the optical Al system and computation via meta-optics. This review will also provide an in-depth discussion of the challenges of this interdisciplinary field and indicate future directions. We expect that this review will inspire researchers in these fields and benefit the next generation of intelligent optical device design.


Assuntos
Inteligência Artificial , Óptica e Fotônica
9.
Sci Adv ; 8(16): eabn5644, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442736

RESUMO

Vacuum ultraviolet (VUV) light plays an essential role across science and technology, from molecular spectroscopy to nanolithography and biomedical procedures. Realizing nanoscale devices for VUV light generation and control is critical for next-generation VUV sources and systems, but the scarcity of low-loss VUV materials creates a substantial challenge. We demonstrate a metalens that both generates-by second-harmonic generation-and simultaneously focuses the generated VUV light. The metalens consists of 150-nm-thick zinc oxide (ZnO) nanoresonators that convert 394 nm (~3.15 eV) light into focused 197-nm (~6.29 eV) radiation, producing a spot 1.7 µm in diameter with a 21-fold power density enhancement as compared to the wavefront at the metalens surface. The reported metalens is ultracompact and phase-matching free, allowing substantial streamlining of VUV system design and facilitating more advanced applications. This work provides a useful platform for developing low-loss VUV components and increasing the accessibility of the VUV regime.

10.
Small Methods ; 6(4): e2101228, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212186

RESUMO

Manipulation and precise delivery of optical energies in the regions of interest within specimens require different strategies. Hence, proper control of input beam parameters is a prerequisite. One of the prominent methods is metasurface optics, capable of crafting properties of light at nanoscales. Here, the generation of an abrupt autofocusing (AAF) beam by a nanophotonic metasurface for biomedical applications is demonstrated. Fluorescence guided laser microprofiling of mouse cardiac samples is experimentally investigated, using the AAF beam to deliver optical energy selectively to specific locations. In addition, photocoagulation of ex vivo swine skin tissue is performed and observed through optical coherence tomography. The results show great potentials for integrating metasurface optics to realize miniature laser surgery instruments for wide applications in biomedicine.


Assuntos
Lasers , Óptica e Fotônica , Animais , Camundongos , Suínos
11.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209225

RESUMO

The optical tweezer is one of the important techniques for contactless manipulation in biological research to control the motion of tiny objects. For three-dimensional (3D) optical manipulation, shaped light beams have been widely used. Typically, spatial light modulators are used for shaping light fields. However, they suffer from bulky size, narrow operational bandwidth, and limitations of incident polarization states. Here, a cubic-phase dielectric metasurface, composed of GaN circular nanopillars, is designed and fabricated to generate a polarization-independent vertically accelerated two-dimensional (2D) Airy beam in the visible region. The distinctive propagation characteristics of a vertically accelerated 2D Airy beam, including non-diffraction, self-acceleration, and self-healing, are experimentally demonstrated. An optical manipulation system equipped with a cubic-phase metasurface is designed to perform 3D manipulation of microscale particles. Due to the high-intensity gradients and the reciprocal propagation trajectory of Airy beams, particles can be laterally shifted and guided along the axial direction. In addition, the performance of optical trapping is quantitatively evaluated by experimentally measured trapping stiffness. Our metasurface has great potential to shape light for compact systems in the field of physics and biological applications.

12.
Nano Lett ; 21(12): 5133-5142, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34097419

RESUMO

Fluorescence microscopy with optical sectioning capabilities is extensively utilized in biological research to obtain three-dimensional structural images of volumetric samples. Tunable lenses have been applied in microscopy for axial scanning to acquire multiplane images. However, images acquired by conventional tunable lenses suffer from spherical aberration and distortions. Here, we design, fabricate, and implement a dielectric Moiré metalens for fluorescence imaging. The Moiré metalens consists of two complementary phase metasurfaces, with variable focal length, ranging from ∼10 to ∼125 mm at 532 nm by tuning mutual angles. In addition, a telecentric configuration using the Moiré metalens is designed for high-contrast multiplane fluorescence imaging. The performance of our system is evaluated by optically sectioned images obtained from HiLo illumination of fluorescently labeled beads, as well as ex vivo mice intestine tissue samples. The compact design of the varifocal metalens may find important applications in fluorescence microscopy and endoscopy for clinical purposes.


Assuntos
Lentes , Animais , Endoscopia , Iluminação , Camundongos , Microscopia de Fluorescência
13.
Light Sci Appl ; 10(1): 52, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692330

RESUMO

Metalenses have emerged as a new optical element or system in recent years, showing superior performance and abundant applications. However, the phase distribution of a metalens has not been measured directly up to now, hindering further quantitative evaluation of its performance. We have developed an interferometric imaging phase measurement system to measure the phase distribution of a metalens by taking only one photo of the interference pattern. Based on the measured phase distribution, we analyse the negative chromatic aberration effect of monochromatic metalenses and propose a feature size of metalenses. Different sensitivities of the phase response to wavelength between the Pancharatnam-Berry phase-based metalens and propagation phase-reliant metalens are directly observed in the experiment. Furthermore, through phase distribution analysis, it is found that the distance between the measured metalens and the brightest spot of focusing will deviate from the focal length when the metalens has a low nominal numerical aperture, even though the metalens is ideal without any fabrication error. We also use the measured phase distribution to quantitatively characterise the imaging performance of the metalens. Our phase measurement system will help not only designers optimise the designs of metalenses but also fabricants distinguish defects to improve the fabrication process, which will pave the way for metalenses in industrial applications.

14.
Science ; 368(6498): 1487-1490, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587020

RESUMO

The development of two-dimensional metasurfaces has shown great potential in quantum-optical technologies because of the excellent flexibility in light-field manipulation. By integrating a metalens array with a nonlinear crystal, we demonstrate a 100-path spontaneous parametric down-conversion photon-pair source in a 10 × 10 array, which shows promise for high-dimensional entanglement and multiphoton-state generation. We demonstrate two-, three- and four-dimensional two-photon path entanglement with different phases encoded by metalenses with fidelities of 98.4, 96.6, and 95.0%, respectively. Furthermore, four-photon and six-photon generation is observed with high indistinguishability of photons generated from different metalenses. Our metalens-array-based quantum photon source is compact, stable, and controllable, indicating a new platform for integrated quantum devices.

15.
Light Sci Appl ; 8: 99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728191

RESUMO

Tomography is an informative imaging modality that is usually implemented by mechanical scanning, owing to the limited depth-of-field (DOF) in conventional systems. However, recent imaging systems are working towards more compact and stable architectures; therefore, developing nonmotion tomography is highly desirable. Here, we propose a metalens-based spectral imaging system with an aplanatic GaN metalens (NA = 0.78), in which large chromatic dispersion is used to access spectral focus tuning and optical zooming in the visible spectrum. After the function of wavelength-switched tomography was confirmed on cascaded samples, this aplanatic metalens is utilized to image microscopic frog egg cells and shows excellent tomographic images with distinct DOF features of the cell membrane and nucleus. Our approach makes good use of the large diffractive dispersion of the metalens and develops a new imaging technique that advances recent informative optical devices.

16.
Nat Nanotechnol ; 14(3): 227-231, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664753

RESUMO

A light-field camera captures both the intensity and the direction of incoming light1-5. This enables a user to refocus pictures and afterwards reconstruct information on the depth of field. Research on light-field imaging can be divided into two components: acquisition and rendering. Microlens arrays have been used for acquisition, but obtaining broadband achromatic images with no spherical aberration remains challenging. Here, we describe a metalens array made of gallium nitride (GaN) nanoantennas6 that can be used to capture light-field information and demonstrate a full-colour light-field camera devoid of chromatic aberration. The metalens array contains an array of 60 × 60 metalenses with diameters of 21.65 µm. The camera has a diffraction-limited resolution of 1.95 µm under white light illumination. The depth of every object in the scene can be reconstructed slice by slice from a series of rendered images with different depths of focus. Full-colour, achromatic light-field cameras could find applications in a variety of fields such as robotic vision, self-driving vehicles and virtual and augmented reality.

17.
Opt Express ; 26(18): 23397-23410, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184841

RESUMO

Enabling laser white-lighting at a correlated color temperature (CCT) of 6500K with the use of only red/green/blue (RGB) tri-color laser diodes (LDs) is demonstrated, which can further perform wavelength division multiplexing (WDM) communication with a high-spectral-usage 16 QAM-OFDM data stream at 11.2 Gbps over 0.5 m. The sampling rate of encoded data is optimized to avoid the aliasing effect and to effectively amplify the signal with high on/off extinction and modulation depth. Proper oversampling can decrease the peak-to-average power ratio (PAPR) of the OFDM data and filter out unwanted noise. There are also six different diffusers used to diverge the white-light mixed by the RGB LD beam. By analyzing the color-casting transmittance, surface roughness, CCT uniformity, divergent angle of the diffuser, and the data transmission capacity, the frosted glass (FG2.8) diffuser with high transmittance diverges the white light with the divergent angle of ± 20° and supports the highest data rate of 14 Gbps over 0.5 m. To fit the day-light CCT, the blue LD power at an optimized bias current is further attenuated with a 0.6-optical density filter for reducing CCT from 100000K to 6500K; however, such an adjustment also degrades the SNR ratio to sacrifice the achievable data rate of the blue LD. The polycarbonate (PC1.5) diffuser with proper surface roughness diverged white-light exhibits the best CCT uniformity and a divergent angle of ± 30° but supports a data rate of only 6.4 Gbps over 0.5 m. The poly (methyl methacrylate) PMMA1.5 diffuser scatters the white light with the largest angle of ± 40°; however, the data rate also decreases to 4.8 Gbps over 0.5 m.

18.
Nat Nanotechnol ; 13(3): 227-232, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29379204

RESUMO

Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design.

19.
Nanoscale ; 8(8): 4579-87, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26842460

RESUMO

The catalytic solid-phase synthesis of self-organized nanoporous tin sulfide (SnS) with enhanced absorption, manipulative transmittance and depolarization features is demonstrated. Using an ultralow radio-frequency (RF) sputtering power, the variation of the orientation angle between the anodized aluminum oxide (AAO) membrane and the axis of the sputtered ion beam detunes the catalytically synthesized SnS from nanorod to nanoporous morphology, along the sidewall of the AAO membrane. The ultraslow catalytic sputtering synthesis on the AAO at the RF plasma power of 20 W and the orientation angle of 0° regulates the porosity and integrality of nanoporous SnS, with average pore diameter of 80-150 nm. When transferring from planar to nanoporous structure, the phase composition changes from SnS to SnS2-Sn2S3, and the optical bandgap shrinks from 1.43 to 1.16 eV, due to the preferred crystalline orientation, which also contributes to an ultralow reflectance of <1% at 200-500 nm when both the transmittance and the surface scattering remain at their maxima. The absorption coefficient is enhanced by nearly one order of magnitude with its minimum of >5 × 10(4) cm(-1) at the wavelength between 200 and 700 nm, due to the red-shifting of the absorption spectrum to at least 100 nm. The catalytically self-organized nanoporous SnS causes strong haze and beam divergence of 20°-30° by depolarized nonlinear scattering at the surface, which favors the solar energy conversion with reduced surface reflection and enhanced photon scattering under preserved transmittance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...