Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Neurodegener ; 12(1): 1, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624510

RESUMO

BACKGROUND: Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS: We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS: p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS: These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Doença de Alzheimer/genética , Receptores de AMPA , Disfunção Cognitiva/genética , Cognição , Camundongos Transgênicos , Mamíferos
2.
Cell Mol Neurobiol ; 40(4): 547-554, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31721013

RESUMO

M1 muscarinic acetylcholine receptors (M1 mAChRs) have long been an attractive target for the treatment of Alzheimer's disease (AD), the most common cause of dementia in the elderly. M1 mAChR agonists show desirably preclinical activities; however, most have not gone further into late clinical trials due to ineffectiveness or side effects. Thus, to understand the signaling pathways involved in M1 mAChR-mediated memory improvement may be important for design of biased agonists with on-target therapeutic effects. M1 mAChRs are classically coupled to Gαq or ectopically to Gαs to activate multiple kinases such as protein kinase C (PKC), Ras and protein kinase A (PKA). Our previous studies have found that M1 mAChRs could improve learning and memory through modulating AMPA receptor GluA1 subunit via PKA-PI3K-Akt signaling. Here, we further investigated whether PKC and Ras were involved in M1 mAChR-mediated modulation of GluA1. We demonstrated the role of PKC and Ras in the signaling pathway, as both PKC inhibitors Ro-31-8425 or Gö6983 and Ras inhibitor salirasib abolished the membrane insertion of GluA1 and enhancement of its phosphorylation at Ser845 induced by M1 mAChRs in the primary cultured neurons and hippocampus in vivo. We further showed that PKC and Ras modulated PKA-PI3K-Akt signaling since the increases of PKA, Akt and mTOR activities by M1 mAChR activation were blocked by PKC and Ras inhibitors. These data demonstrated the detailed mechanism underlying M1 mAChR-mediated modulation of GluA1 through Gαq/11 coupling, broadening the knowledge of the downstream signaling after M1 mAChR-Gαq/11 coupling.


Assuntos
Proteína Quinase C/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores de AMPA/metabolismo , Proteínas ras/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
3.
Neuroscience ; 408: 239-247, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981860

RESUMO

M1 muscarinic receptors have long been identified as a potential therapeutic target for the treatment of cognitive impairment in Alzheimer's disease (AD). Our previous study has shown that M1 receptors promote membrane insertion and synaptic delivery of AMPA receptor GluA1 subunit. In this study, we sought to determine whether activation of M1 receptor would rescue the cognitive impairment in AD model mice through modulation of GluA1 subunit. For the mice injected with aggregated ß-amyloid (Aß) fragments to impair learning and memory, activation of M1 receptors could rescue it by reducing the latency to find the platform and spending more time in the target quadrant in the probe test in the Morris water maze. However, such an effect was ablated in mice with Ser845 residue of GluA1 mutated to alanine. Furthermore, the activation of M1 receptors enhanced the expression of GluA1 and its phosphorylation at Ser845 and drove GluA1 to incorporate with PSD95, a postsynaptic marker, in the hippocampi from Aß-injected wild type mice but not from the mutant mice. Moreover, for 9-month-old APP/PS1 transgenic AD model mice, which may resemble the late AD, M1 receptor activation could not improve the cognitive impairment significantly. In addition, the enhancement of GluA1 expression and its phosphorylation at Ser845 were not observed in their hippocampi. Taken together, the study indicated that M1 receptor activation rescued the cognitive deficit through modulating the trafficking of GluA1-containing AMPA receptors and the therapeutics targeting M1 receptors should aim at mild AD or even pre-AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Agonistas Muscarínicos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de AMPA/metabolismo , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Agonistas Muscarínicos/uso terapêutico , Fosforilação , Receptor Muscarínico M1/metabolismo
4.
Neuropharmacology ; 146: 242-251, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529302

RESUMO

Cognitive flexibility is an important aspect of executive function. The cholinergic system, an important component of cognition, has been shown to modulate cognitive flexibility mainly through the striatum and prefrontal cortex. The role of M1 muscarinic receptors (M1 mAChRs), an important therapeutic target in the cholinergic system, in hippocampus-dependent cognitive flexibility is unclarified. In the present study, we demonstrated that selective activation of M1 mAChRs promoted extinction of initial learned response and facilitated acquisition of reversal learning in the Morris water maze, a behavior test that is mainly dependent on the hippocampus. However, these effects were abolished in GluA2 mutant mice with deficiency in phosphorylation of Ser880 by protein kinase C (PKC). Further long-term depression (LTD) in the hippocampal CA1 area induced by M1 mAChR activation was shown to be dependent on AMPA receptor subunit GluA2 but not GluA1. M1 mAChRs increased GluA2 endocytosis through phosphorylation of Ser880 by PKC. Inhibition of PKC blocked M1 mAChR-mediated LTD, memory switching and reversal learning facilitation. Moreover, the slow memory extinction observed in GluA2 mutant mice and PKC inhibitor-treated mice appeared to affect the consolidation and retrieval of reversal learning. Thus, these results demonstrate that M1 mAChRs mainly facilitate acquisition in spatial reversal learning and further elucidate that such an effect is dependent on the phosphorylation of GluA2 by PKC. The study helps clarify the role of M1 mAChRs in cognitive flexibility and may prompt the earlier prevention of cognitive inflexibility.


Assuntos
Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Receptores de AMPA/metabolismo , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Cognição/fisiologia , Hipocampo , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Piperidinas , Proteína Quinase C/antagonistas & inibidores , Quinolonas , Receptor Muscarínico M1/agonistas , Receptores de AMPA/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...