Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7871, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052784

RESUMO

Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Mesencéfalo , Células-Tronco Pluripotentes/metabolismo
2.
STAR Protoc ; 4(3): 102451, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481727

RESUMO

Here, we present a protocol for generating miniaturized controlled midbrain organoids (MiCOs) of reproducible size and cellular composition, without a necrotic center. We describe steps for maintaining and passaging human pluripotent stem cells, generating MiCOs using AggreWell™400, and maintaining them in an EB-Disk360on an orbital shaker, eliminating the need for Matrigel or a spinner flask and preventing organoid fusion. We then detail organoid collection for different endpoint analysis. This protocol is suitable for compound screening and disease modeling studies.


Assuntos
Mesencéfalo , Células-Tronco Pluripotentes , Humanos , Células Cultivadas , Organoides
3.
Methods Mol Biol ; 2239: 135-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33226617

RESUMO

Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.


Assuntos
Reprogramação Celular/genética , Meios de Cultura/química , Células-Tronco Pluripotentes Induzidas/citologia , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Eletroporação/métodos , Células Alimentadoras , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Vitronectina
4.
Stem Cell Res ; 48: 101945, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791483

RESUMO

The differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol. The protocol is amenable across a range of iPSC lines, with more than 95% of cells at day 21 positive for the neuronal marker MAP2. We found that conversion from pluripotent stem cells resulted in neurons from the central and peripheral nervous system; however, by incorporating a short CNS patterning step, we eliminated these peripheral neurons. Furthermore, we used the patterning step to control the rostral-caudal identity. This approach of sequential patterning and conversion produced pure populations of forebrain neurons, when patterned with SMAD inhibitors. Additionally, when SMAD inhibitors and WNT agonists were applied, the approach produced anterior hindbrain excitatory neurons and resulted in a neuronal population containing VSX2/SHOX2 V2a interneurons. Overall, this sequential patterning and conversion protocol can be used for the production of a variety of CNS excitatory neurons from patient-derived iPSCs, and is a highly versatile system for investigating early disease events for a range of neurological disorders including Alzheimer's disease, motor neurons disease and spinal cord injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Neurônios
5.
Stem Cell Res ; 45: 101781, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305865

RESUMO

We generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a clinically diagnosed 70 year old female Parkinson's disease (PD) patient heterozygous for a pathogenic missense variant (p.G2019S; c. 6055 G > A) in the leucine-rich repeat kinase 2 (LRRK2) gene by using non-integrating Sendai viruses. The DANi-011A iPSC line has a normal karyotype and is free from Sendai viruses. The expression of pluripotent markers in the iPSC line was confirmed by immunofluorescent staining, and we confirmed its ability to differentiate into the three germ layers. The DANi-011A iPSC line can be used for modeling PD and as a drug-screening platform.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Idoso , Linhagem Celular , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética
6.
Stem Cell Res ; 42: 101657, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786474

RESUMO

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients with different familial mutations using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Adulto , Linhagem Celular , Humanos , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/patologia
7.
Front Cell Dev Biol ; 6: 54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868584

RESUMO

Gene editing in human embryonic stem cells (hESCs) has been significantly enhanced by the discovery and development of CRISPR Cas9, a programmable nuclease system that can introduce targeted double-stranded breaks. The system relies on the optimal selection of a sgRNA sequence with low off-targets and high efficiency. We designed an improved monomeric red fluorescent protein reporter, GEmCherry2, for assessing CRISPR Cas9 activity and for optimizing sgRNA. By incorporating an out-of-frame sequence to the N-terminal of the red fluorescent protein mCherry, we created a visual tool for assessing the indel frequency after cutting with CRISPR Cas9. When a sgRNA-Cas9 construct is co-transfected with a corresponding GEmCherry2 construct, single nucleotide indels can move the GEmCherry2 sequence back in-frame and allow quantification and comparison of the efficiency of different sgRNA target sites by measuring red fluorescence. With this GEmCherry2 assay, we compared four target sites in the safe harbor AAVS1 locus and found significant differences in target site activity. We verified the activity using TIDE, which ranked our target sites in a similar order as the GEmCherry2 system. We also identified an AAV short inverted terminal repeat sequence within the Cas9 construct that, upon removal significantly improved transient transfection and expression in hESCs. Moreover, using GEmCherry2, we designed a sgRNA to target SORCS2 in hESCs and successfully introduced indels into the coding sequence of SORCS2.

8.
Front Cell Dev Biol ; 6: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468158

RESUMO

The P-type ATPases family consists of ion and lipid transporters. Their unique diversity in function and expression is critical for normal development. In this study we investigated human pluripotent stem cells (hPSC) and different neural progenitor states to characterize the expression of the plasma membrane calcium ATPases (PMCAs) during human neural development and in mature mesencephalic dopaminergic (mesDA) neurons. Our RNA sequencing data identified a dynamic change in ATPase expression correlating with the differentiation time of the neural progenitors, which was independent of the neuronal progenitor type. Expression of ATP2B1 and ATP2B4 were the most abundantly expressed, in accordance with their main role in Ca2+ regulation and we observed all of the PMCAs to have a subcellular punctate localization. Interestingly in hPSCs ATP2B1 and ATP2B3 were highly expressed in a cell cycle specific manner and ATP2B2 and ATP2B4 were highly expressed in a hPSC sub-population. In neural rosettes a strong apical PMCA expression was identified in the luminal region. Lastly, we confirmed all PMCAs to be expressed in mesDA neurons, however at varying levels. Our results reveal that PMCA expression dynamically changes during stem cell differentiation and highlights the diverging needs of cell populations to regulate and properly integrate Ca2+ changes, which can ultimately correspond to changes in specific stem cell transcription states.

9.
SICOT J ; 2: 16, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27163105

RESUMO

INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) - hyaluronic acid - tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (µCT) and histomorphometry. RESULTS AND DISCUSSION: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

10.
Biores Open Access ; 4(1): 363-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26487981

RESUMO

Bone tissue engineering requires a well-designed scaffold that can be biodegradable, biocompatible, and support the stem cells to osteogenic differentiation. Porous polycaprolactone (PCL) scaffold prepared by fused deposition modeling is an attractive biomaterial that has been used in clinic. However, PCL scaffolds lack biological function and osteoinductivity. In this study, we functionalized the PCL scaffolds by embedding them with a matrix of hyaluronic acid/ß-tricalcium phosphate (HA/TCP). Human mesenchymal stem cells (MSCs) were cultured on scaffolds with and without coating to investigate proliferation and osteogenic differentiation. The DNA amount was significantly higher in the HA/TCP-coated scaffold on day 21. At the gene expression level, HA/TCP coating significantly increased the expression of ALP and COLI on day 4. These data correlated with the ALP activity peaking on day 7 in the HA/TCP-coated scaffold. Scanning electron microscope and histological analysis revealed that the cell matrix and calcium deposition were distributed more uniformly in the coated scaffolds compared to scaffolds without coating. In conclusion, the HA/TCP coating improved cellular proliferation, osteogenic differentiation, and uniform distribution of the cellular matrix in vitro. The HA/TCP-PCL scaffold holds great promise to accommodate human bone marrow-derived MSCs for bone reconstruction purposes, which warrants future in vivo studies.

11.
Acta Biomater ; 28: 171-182, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415776

RESUMO

While chemotherapy is universally recognized as a frontline treatment strategy for breast cancer, it is not always successful; among the leading causes of treatment failure is existing and/or acquired multidrug resistance. Cancer stem cells (CSCs), which constitute a minority of the cells of a tumor, are acknowledged to be responsible for increased resistance to chemo-drugs through a combination of increased expression of ATP-binding cassette transporters (ABC transporters), an increased anti-apoptotic defense, and/or the ability for extensive DNA repair like normal stem cells. Consequently, more effective therapy, especially targeted to CSCs, is urgently required. We studied the characteristics of 231-CSCs (CD44+/CD24-) sorted from human MDA-MB-231 breast cancer cells and demonstrated that 231-CSCs exhibited enhanced capacities for proliferation, migration, tumorigenesis and chemotherapy resistance. To address these multifunctional facets of CSCs, we devised a non-ionic surfactant-based vesicle (niosome) co-delivery system to simultaneously deliver siRNAs, targeted to both the ABC transporter (ABCG2) and the anti-apoptosis defense gene (BCL2), and doxorubicin (DOX) to CSCs. The rationale is to sensitize CSCs to DOX by down regulating the drug-resistance gene ABCG2 and simultaneously induce apoptosis by lowering BCL2 expression. The co-delivery system (CDS) successfully delivered siRNAs and DOX to the cytoplasm and nuclei, respectively, and resulted in a down-regulation of ABCG2- and BCL2 mRNAs in CSCs by 60% and 65%, respectively, compared to the control. A corresponding decrease in protein expression was observed using Western blotting. The IC50 of DOX in CSCs concurrently decreased significantly. Our result established CDS as a promising multi-drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are acknowledged to be responsible for increased resistance to chemo-drugs through a combination of increased expression of ABC transporters, an increased anti-apoptotic defense, and/or the ability for extensive DNA repair like normal stem cells. Consequently, effective therapy, especially to CSCs, is urgently required. In current study, we studied the characteristics of 231-CSCs sorted from human MDA-MB-231 breast cancer cells and found that 231-CSCs possessed enhanced proliferation, migration, tumorigenesis, and DOX resistance. We employed a non-ionic surfactant-based vesicle (niosome) delivery system to simultaneously deliver siRNAs targeted to multi-drug resistance genes, and DOX to kill 231-CSCs. The CDS showed an enhanced therapeutic effect by resensitizing 231-CSCs to DOX and may constitute a promising candidate for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos
12.
Acta Biomater ; 18: 21-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25686557

RESUMO

Bone metastasis is one of the leading causes of death in breast cancer patients. The current treatment is performed as a palliative therapy and the adverse side effects can compromise the patients' quality of life. In order to both effectively treat bone metastasis and avoid the limitation of current strategies, we have invented a drug eluting scaffold with clay matrix release doxorubicin (DESCLAYMR_DOX) to mechanically support the structure after resecting the metastatic tissue while also releasing the anticancer drug doxorubicin which supplements growth inhibition and elimination of the remaining tumor cells. We have previously demonstrated that this device has the capacity to regenerate the bone and provide sustained release of the anticancer drug in vitro. In this study, we focus on the ability of the device to inhibit cancer cell growth in vitro as well as in vivo. Drug-release kinetics was investigated and the cell viability test showed that the tumor inhibitory effect is sustained for up to 4weeks in vitro. Subcutaneous implantation of DESCLAYMR_DOX in athymic mice resulted in significant growth inhibition of human tumor xenografts of breast origin and decelerated multi-organ metastasis formation. Fluorescence images, visualizing doxorubicin, showed a sustained drug release from the DESCLAYMR device in vivo. Furthermore, local use of DESCLAYMR_DOX implantation reduced the incidence of doxorubicin's cardio-toxicity. These results suggest that DESCLAYMR_DOX can be used in reconstructive surgery to support the structure after bone tumor resection and facilitate a sustained release of anticancer drugs in order to prevent tumor recurrence.


Assuntos
Neoplasias/patologia , Engenharia Tecidual/instrumentação , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Fibrose , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Soluções , Carga Tumoral/efeitos dos fármacos
13.
Tissue Eng Part A ; 21(3-4): 729-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25252795

RESUMO

In this study, we sought to assess the osteogenic potential of human dental pulp stem cells (DPSCs) on three different polycaprolactone (PCL) scaffolds. The backbone structure of the scaffolds was manufactured by fused deposition modeling (PCL scaffold). The composition and morphology was functionalized in two of the scaffolds. The first underwent thermal induced phase separation of PCL infused into the pores of the PCL scaffold. This procedure resulted in a highly variable micro- and nanostructured porous (NSP), interconnected, and isotropic tubular morphology (NSP-PCL scaffold). The second scaffold type was functionalized by dip-coating the PCL scaffold with a mixture of hyaluronic acid and ß-TCP (HT-PCL scaffold). The scaffolds were cylindrical and measured 5 mm in height and 10 mm in diameter. They were seeded with 1×10(6) human DPSCs, a cell type known to express bone-related markers, differentiate into osteoblasts-like cells, and to produce a mineralized bone-like extracellular matrix. DPSCs were phenotypically characterized by flow cytometry for CD90(+), CD73(+), CD105(+), and CD14(-). DNA, ALP, and Ca(2+) assays and real-time quantitative polymerase chain reaction for genes involved in osteogenic differentiation were analyzed on day 1, 7, 14, and 21. Cell viability and distribution were assessed on day 1, 7, 14, and 21 by fluorescent-, scanning electron-, and confocal microscopy. The results revealed that the DPSCs expressed relevant gene expression consistent with osteogenic differentiation. The NSP-PCL and HT-PCL scaffolds promoted osteogenic differentiation and Ca(2+) deposition after 21 days of cultivation. Different gene expressions associated with mature osteoblasts were upregulated in these two scaffold types, suggesting that the methods in which the scaffolds promote osteogenic differentiation, depends on functionalization approaches. However, only the HT-PCL scaffold was also able to support cell proliferation and cell migration resulting in even cell dispersion throughout the scaffold. In conclusion, DPSCs could be a possible alternate cell source for bone tissue engineering. The HT-PCL scaffold showed promising results in terms of promoting cell migration and osteogenic differentiation, which warrants future in vivo studies.


Assuntos
Fosfatos de Cálcio/química , Ácido Hialurônico/química , Osteoblastos/citologia , Poliésteres/química , Células-Tronco/citologia , Alicerces Teciduais , Adulto , Substitutos Ósseos/síntese química , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Polpa Dentária/citologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Teste de Materiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteoblastos/fisiologia , Osteogênese/fisiologia , Tamanho da Partícula , Células-Tronco/fisiologia , Engenharia Tecidual/instrumentação , Adulto Jovem
14.
Int Orthop ; 38(5): 1011-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24652423

RESUMO

PURPOSE: Previous studies have shown that blocking the endplate nutritional pathway with bone cement did not result in obvious intervertebral disc degeneration (IDD) in mature animal models. However, there are very few comparable studies in immature animal models. As vertebroplasty currently is beginning to be applied in young, even biologically immature patients, it is important to investigate the effect of cement blocking at the endplate in an immature animal model. METHODS: Two lumbar intervertebral discs in eight immature pigs were either blocked by cement in both endplate pathways or stabbed with a scalpel in the annulus fibrosus (AF) as a positive control, and with a third disc remaining intact as a normal control. Magnetic resonance imaging (MRI) and histology study were performed. RESULTS: After three months, the cement-blocked discs exhibited severe IDD, with the percentage of disc-height index (DHI), nucleus pulposus (NP) area, and NP T2 value significantly lower than the normal control. These IDD changes were histologically confirmed. Post-contrast MRI showed diseased nutritional diffusion patterns in the cement-blocked discs. Moreover, the degenerative changes of the cement-blocked discs exceeded those of the injured AF positive controls. CONCLUSIONS: The endplate nutritional pathway was interfered with and diseased after three months of bone cement intervention in an immature porcine model. Severe interference in the endplate nutritional pathway in an immature porcine model caused IDD. These findings also draw attention to the fact that interference in endplate nutritional pathways in immature or young patients may affect the vitality of adjacent discs.


Assuntos
Degeneração do Disco Intervertebral/etiologia , Disco Intervertebral/fisiologia , Fatores Etários , Animais , Cimentos Ósseos , Modelos Animais de Doenças , Feminino , Disco Intervertebral/crescimento & desenvolvimento , Modelos Animais , Fenômenos Fisiológicos da Nutrição , Suínos
15.
Acta Orthop ; 85(2): 201-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24564750

RESUMO

BACKGROUND AND PURPOSE: The osteogenic potency of erythropoietin (EPO) has been documented. However, its efficacy in a large-animal model has not yet been investigated; nor has a clinically safe dosage. The purpose of this study was to overcome such limitations of previous studies and thereby pave the way for possible clinical application. Our hypothesis was that EPO increases calvarial bone healing compared to a saline control in the same subject. METHODS: We used a porcine calvarial defect model. In each of 18 pigs, 6 cylindrical defects (diameter: 1 cm; height: 1 cm) were drilled, allowing 3 pairwise comparisons. Treatment consisted of either 900 IU/mL EPO or an equal volume of saline in combination with either autograft, a collagen carrier, or a polycaprolactone (PCL) scaffold. After an observation time of 5 weeks, the primary outcome (bone volume fraction (BV/TV)) was assessed with high-resolution quantitative computed tomography. Secondary outcome measures were histomorphometry and blood samples. RESULTS: The median BV/TV ratio of the EPO-treated collagen group was 1.06 (CI: 1.02-1.11) relative to the saline-treated collagen group. Histomorphometry showed a similar median effect size, but it did not reach statistical significance. Autograft treatment had excellent healing potential and was able to completely regenerate the bone defect independently of EPO treatment. Bony ingrowth into the PCL scaffold was sparse, both with and without EPO. Neither a substantial systemic effect nor adverse events were observed. The number of blood vessels was similar in EPO-treated defects and saline-treated defects. INTERPRETATION: Topical administration of EPO on a collagen carrier moderately increased bone healing. The dosing regime was safe, and could have possible application in the clinical setting. However, in order to increase the clinical relevance, a more potent but still clinically safe dose should be investigated.


Assuntos
Transplante Ósseo , Colágeno , Eritropoetina/farmacologia , Consolidação da Fratura/efeitos dos fármacos , Poliésteres , Crânio/lesões , Alicerces Teciduais , Animais , Feminino , Osteogênese , Proteínas Recombinantes/farmacologia , Crânio/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X , Transplante Autólogo
16.
Sci Rep ; 3: 2243, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873182

RESUMO

We describe a simple method for bone engineering using biodegradable scaffolds with mesenchymal stem cells derived from human induced-pluripotent stem cells (hiPS-MSCs). The hiPS-MSCs expressed mesenchymal markers (CD90, CD73, and CD105), possessed multipotency characterized by tri-lineages differentiation: osteogenic, adipogenic, and chondrogenic, and lost pluripotency - as seen with the loss of markers OCT3/4 and TRA-1-81 - and tumorigenicity. However, these iPS-MSCs are still positive for marker NANOG. We further explored the osteogenic potential of the hiPS-MSCs in synthetic polymer polycaprolactone (PCL) scaffolds or PCL scaffolds functionalized with natural polymer hyaluronan and ceramic TCP (PHT) both in vitro and in vivo. Our results showed that these iPS-MSCs are functionally compatible with the two 3D scaffolds tested and formed typically calcified structure in the scaffolds. Overall, our results suggest the iPS-MSCs derived by this simple method retain fully osteogenic function and provide a new solution towards personalized orthopedic therapy in the future.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Alicerces Teciduais , Animais , Calcificação Fisiológica , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , RNA Mensageiro/genética , Fatores de Tempo
17.
Int J Pharm ; 448(1): 214-20, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23538094

RESUMO

Little is known about the interaction between antineoplastic drugs and implants in bone cancer patients. We investigated the interaction between commercially available porous tantalum (Ta) implants and the chemotherapeutic drug, Doxorubicin (DOX). DOX solutions were prepared in the presence of Ta implant. The changes in fluorescence intensity of the DOX chromophore were measured by spectrofluorometry and the efficacy of DOX was evaluated by viability of rabbit rectal tumor cells (VX2). After 5 min interaction of the DOX solution (5 µg/ml) with the Ta implant, the fluorescent intensity of the DOX solution was 85% degraded, and only 20% the drug efficacy to kill VX2 cells was retained. However, after adding a reducing agent, Dithiothreitol (DTT, 10 µg/ml), 80% of the original fluorescence and 50% of the drug efficacy were restored while UV irradiation enhanced drug degradation in the presence of Ta implant. The action of DTT and UV irradiation indicated that reactive oxygen species (ROS) were involved in the drug degradation mechanism. We detected that Ta implants in aqueous medium produced hydroxyl radicals. Cells showed higher intracellular ROS activity when culture medium was incubated with the Ta implant prior to cell culture. It is concluded that the porous Ta implant antagonizes the cytotoxicity of DOX via ROS generation of the porous Ta implant.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Próteses e Implantes , Espécies Reativas de Oxigênio/química , Tantálio/química , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ditiotreitol/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/efeitos da radiação , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
18.
Int J Nanomedicine ; 7: 4285-97, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22904634

RESUMO

Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and ß-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Fosfatase Alcalina/química , Silicatos de Alumínio/química , Análise de Variância , Materiais Biocompatíveis/química , Regeneração Óssea , Cálcio/química , Fosfatos de Cálcio/química , Linhagem Celular Transformada , Fenômenos Fisiológicos Celulares , Quitosana/química , Argila , Preparações de Ação Retardada , Histocitoquímica , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese , Poliésteres/química
19.
Int J Nanomedicine ; 6: 3057-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162662

RESUMO

Many studies in recent years have focused on surface engineering of implant materials in order to improve their biocompatibility and other performance. Porous tantalum implants have increasingly been used in implant surgeries, due to their biocompatibility, physical stability, and good mechanical strength. In this study we functionalized the porous tantalum implant for sustained drug delivery capability via electrostatic self-assembly of polyelectrolytes of hyaluronic acid, methylated collagen, and terpolymer on the surface of a porous tantalum implant. The anticancer drug doxorubicin was encapsulated into the multilayer copolymer membranes on the porous tantalum implants. Results showed the sustained released of doxorubicin from the functionalized porous tantalum implants for up to 1 month. The drug release solutions in 1 month all had inhibitory effects on the proliferation of chondrosarcoma cell line SW1353. These results suggest that this functionalized implant could be used in reconstructive surgery for the treatment of bone tumor as a local, sustained drug delivery system.


Assuntos
Antibióticos Antineoplásicos/química , Materiais Biocompatíveis/química , Doxorrubicina/química , Implantes de Medicamento/química , Membranas Artificiais , Polímeros/química , Tantálio/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Condrossarcoma/tratamento farmacológico , Condrossarcoma/metabolismo , Preparações de Ação Retardada , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/farmacocinética , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Porosidade , Eletricidade Estática , Propriedades de Superfície
20.
Acta Biomater ; 7(5): 2244-55, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21195810

RESUMO

It is of high clinical relevance in bone tissue engineering that scaffolds promote a high seeding efficiency of cells capable of osteogenic differentiation, such as human bone marrow-derived mesenchymal stem cells (hMSCs). We evaluated the effects of a novel polycaprolactone (PCL) scaffold on hMSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in osteogenic stimulation medium for up to 28 days. Compared to naked PCL scaffolds, embedded scaffolds provided a higher cell seeding efficiency (t-test, P<0.05), a more homogeneous cell distribution and more osteogenically differentiated cells, verified by a more pronounced gene expression of the bone markers alkaline phosphatase, osteocalcin, bone sialoprotein I and bone sialoprotein II. Dynamic culture resulted in higher amounts of DNA (day 14 and day 21) and calcium (day 21 and day 28), compared to static culture. Dynamic culture and the embedding synergistically enhanced the calcium deposition of hMSC on day 21 and day 28. This in vitro study provides evidence that hybrid scaffolds made from natural and synthetic polymers improve cellular seeding efficiency, proliferation, distribution and osteogenic differentiation.


Assuntos
Osso e Ossos/fisiologia , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , DNA/metabolismo , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Poliésteres/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coloração e Rotulagem , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...