Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
JBMR Plus ; 7(12): e10837, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130753

RESUMO

Chronic kidney disease (CKD)-mineral bone disorder (CKD-MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD-MBD is unknown. To determine the effect of fiber on CKD-MBD, we fed the Cy/+ rat with progressive CKD a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD-MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut-derived uremic toxins. Results were analyzed by two-way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor-23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short-chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD-MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut-derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

3.
Bone ; 173: 116808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207990

RESUMO

Chronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.


Assuntos
Fraturas do Quadril , Insuficiência Renal Crônica , Humanos , Animais , Ratos , Microtomografia por Raio-X , Porosidade , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Densidade Óssea , Modelos Animais , Insuficiência Renal Crônica/diagnóstico por imagem
4.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778372

RESUMO

Background: Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods: The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results: In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions: The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement: Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.

5.
J Orthop Res ; 41(5): 1060-1069, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200412

RESUMO

Nonunion describes bone fractures that fail to heal, resulting in the fracture callus failing to fully ossify or, in atrophic cases, not forming altogether. Fracture healing is regulated, in part, by the balance of proinflammatory and anti-inflammatory processes occurring within the bone marrow and surface cell populations. We sought to further understand the role of osteoimmunology (i.e., study of the close relationship between the immune system and bone) by examining immune cell gene expression via single-cell RNA sequencing of intramedullary canal tissue obtained from human patients with femoral nonunions. Intramedullary canal tissue samples obtained by reaming were collected at the time of surgical repair for femur fracture nonunion (n = 5) or from native bone controls when harvesting autologous bone graft (n = 4). Cells within the samples were isolated and analyzed using the Chromium Single-Cell System (10x Genomics Inc.) and Illumina sequencers. Twenty-three distinct cell clusters were identified, with higher cell proportions in the nonunion samples for monocytes and CD14 + dendritic cells (DCs), and lower proportions of T cells, myelocytes, and promyelocytes in nonunion samples. Gene expression differences were identified in each of the cell clusters from cell types associated with osteoimmunology, including CD14 + DC, monocytes, T cells, promyelocytes, and myelocytes. These results provide human-derived gene profiles that can further our understanding of pathways that may be a cause or a consequence of nonunion, providing the clinical rationale to focus on specific components of osteoimmunology. Clinical significance: The novel single-cell approach may lead to clinically relevant diagnostic biomarkers during earlier stages of nonunion development and/or investigation into therapeutic options.


Assuntos
Fraturas do Fêmur , Fraturas não Consolidadas , Humanos , Análise da Expressão Gênica de Célula Única , Calo Ósseo , Consolidação da Fratura , Osteogênese , Fraturas não Consolidadas/terapia , Resultado do Tratamento , Estudos Retrospectivos
6.
JBMR Plus ; 6(12): e10698, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36530183

RESUMO

Dietary phosphorus restriction and phosphorus binders are commonly prescribed for patients with chronic kidney disease (CKD). However, occurrences of non-adherence to these interventions are common. As low-phosphorus (LP) diets have been consistently experimentally shown in vitro to increase intestinal phosphorus absorption efficiency, a bout of non-adherence to diet or binders may cause an unintended consequence of enhanced intestinal phosphorus absorption. Thus, we aimed to determine the effect of a single bout of high-phosphorus (HP) intake after acclimation to a LP diet. Male Sprague Dawley rats with 5/6 nephrectomy (n = 36) or sham operation (n = 36) were block-randomized to 1 of 3 diets: LP (0.1% P w/w), HP (1.2%), or LP followed by acute HP (LPHP 0.1% then 1.2%). Phosphorus absorption tests were conducted using 33P radioisotope administrated by oral gavage or intravenously (iv). Although the overall two-way ANCOVA model for intestinal fractional phosphorus absorption was non-significant, exploratory comparisons showed intestinal fractional phosphorus absorption efficiency tended to be higher in rats in the LP compared with HP or LPHP groups. Rats in the HP or LPHP groups had higher plasma phosphorus compared with rats in the LP group, but the LPHP group was not different from the HP group. Gene expression of the major intestinal phosphate transporter, NaPi-2b, was lower in the jejunum of rats in the LPHP group compared with rats in the HP group but not different in the duodenum. These results demonstrate that an acute HP load after acclimation to a LP diet does not lead to enhanced intestinal fractional phosphorus absorption efficiency in 5/6 nephrectomized male rats. These data provide evidence against the notion that dietary phosphorus restriction or binder use adversely increases absorption efficiency after a single instance of dietary or binder non-adherence. However, other adverse consequences of fluctuating dietary phosphorus intake cannot be ruled out. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Bone Rep ; 17: 101612, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36035656

RESUMO

Cortical porosity develops in chronic kidney disease (CKD) and increases with progressing disease. Cortical porosity is likely a prominent contributor to skeletal fragility/fracture. The degree to which cortical porosity occurs throughout the skeleton is not fully known. In this study, we assessed cortical bone porosity via micro-computed tomography at multiple skeletal sites in rats with progressive chronic kidney disease. We hypothesized that cortical porosity would occur in long bones throughout the body, but to a lesser degree in flat bones and irregular bones. Porosity was measured, using micro-CT, at 17 different skeletal sites in 6 male rats with CKD. Varying degrees of porosity were seen throughout the skeleton with higher porosity in flat and irregular bone (i.e. parietal bone, mandible) vs. long bones (p = 0.01) and in non-weightbearing bones vs. weightbearing bones (p = 0.01). Porosity was also higher in proximal sites vs. distal sites in long bones (p < 0.01 in all comparisons). There was large heterogeneity in porosity within skeletal sites across rats and within the same rat across skeletal sites. Correlations showed cortical porosity of the proximal tibia was positively associated with porosity at the other sites with the strongest correlation to the parietal bone and the weakest to the ulna. Overall, our data demonstrates varying and significant cortical bone porosity across the skeleton of animals with chronic kidney disease. These data point to careful selection of skeletal sites to assess porosity in pre-clinical studies and the potential for fractures at multiple skeletal sites in patients with CKD.

8.
Nephrol Dial Transplant ; 37(10): 1857-1867, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35482713

RESUMO

BACKGROUND: Anemia and chronic kidney disease-mineral and bone disorder (CKD-MBD) are common and begin early in CKD. Limited studies have concurrently compared the effects of ferric citrate (FC) versus intravenous (IV) iron on CKD-MBD and iron homeostasis in moderate CKD. METHODS: We tested the effects of 10 weeks of 2% FC versus IV iron sucrose in rats with moderate CKD (Cy/+ male rat) and untreated normal (NL) littermates. Outcomes included a comprehensive assessment of CKD-MBD, iron homeostasis and oxidative stress. RESULTS: CKD rats had azotemia, elevated phosphorus, parathyroid hormone and fibroblast growth factor-23 (FGF23). Compared with untreated CKD rats, treatment with FC led to lower plasma phosphorus, intact FGF23 and a trend (P = 0.07) toward lower C-terminal FGF23. FC and IV iron equally reduced aorta and heart calcifications to levels similar to NL animals. Compared with NL animals, CKD animals had higher bone turnover, lower trabecular volume and no difference in mineralization; these were unaffected by either iron treatment. Rats treated with IV iron had cortical and bone mechanical properties similar to NL animals. FC increased the transferrin saturation rate compared with untreated CKD and NL rats. Neither iron treatment increased oxidative stress above that of untreated CKD. CONCLUSIONS: Oral FC improved phosphorus homeostasis, some iron-related parameters and the production and cleavage of FGF23. The intermittent effect of low-dose IV iron sucrose on cardiovascular calcification and bone should be further explored in moderate-advanced CKD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Animais , Biomarcadores , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Compostos Férricos , Óxido de Ferro Sacarado , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Ferro/uso terapêutico , Masculino , Minerais , Hormônio Paratireóideo , Fósforo , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Transferrinas/uso terapêutico
9.
JBMR Plus ; 6(3): e10600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35309859

RESUMO

Chronic kidney disease-mineral and bone disorder (CKD-MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end-stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD-MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT-137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP-2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C-terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8-OHdG in the serum or aorta. KP treatment reduced aortic 8-OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

10.
Bone Rep ; 16: 101174, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35252482

RESUMO

PURPOSE: Patients with chronic kidney disease (CKD) have high risk of fracture in part due to cortical bone deterioration. The goal of this study was to assess the impact of two different bisphosphonates and dosing regimens on cortical microstructure (porosity, thickness, area) and bone mechanical properties in animal models of CKD. METHODS: In experiment 1, Male Cy/+ (CKD) rats were treated with either a single dose or ten fractionated doses of zoledronate at 18 weeks of age. Fractionated animals received 1/10th of single dose given weekly for 10 weeks, with study endpoint at 28 weeks of age. In experiment 2, male C57Bl/6 J mice were given dietary adenine (0.2%) to induce CKD. Bisphosphonate treated groups were given either a single dose of zoledronate or weekly risedronate injections for 4 weeks. Cortical microstructure was assessed via µCT and mechanical parameters evaluated by monotonic bending tests. RESULTS: Exp 1: CKD rats had higher blood urea nitrogen (BUN) and parathyroid hormone (PTH) compared to NL littermate controls. Single dose zoledronate had significantly higher cortical porosity in CKD S.Zol (2.29%) compared to NL control (0.04%) and untreated CKD (0.14%) (p = 0.004). Exp 2: All adenine groups had significantly higher BUN and PTH compared to control mice. Mice treated with single dose zoledronate (Ad + Zol) had the highest porosity (~6%), which was significantly higher compared to either Ad or Ad + Ris (~3%; p < 0.0001) and control mice had the lowest cortical porosity (0.35%). In both experiments, mechanics were minimally affected by any bisphosphonate dosing regimen. CONCLUSION: A single dose of zoledronate leads to higher cortical porosity compared to more frequent dosing of bisphosphonates (fractionated zoledronate or risedronate). Bisphosphonate treatment demonstrated limited effectiveness in preventing cortical bone microstructure deterioration with mechanical parameters remaining compromised due to CKD and/or secondary hyperparathyroidism irrespective of bisphosphonate treatment.

11.
Bone ; 157: 116340, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35085840

RESUMO

PURPOSE: Chronic kidney disease (CKD) leads to increased bone fragility and risk of fracture. Cortical deteriorations, including cortical porosity, are key factors in fracture susceptibility in CKD. Since secondary hyperparathyroidism is common in CKD individuals and contributes to cortical deterioration, we hypothesized that reducing parathyroid hormone (PTH) may modulate CKD-induced cortical porosity. The goal of this pilot study was to assess the effects of lowering PTH, via the preclinical analogue of the FDA-approved calcimimetic etelcalcetide (KP-2326), on the development and progression of cortical pores in the setting of CKD. METHODS: Male Cy/+ Sprague Dawley rats with clinical biochemistries consistent with CKD (N = 8) were assigned to the study. At 30-32 weeks of age, cortical bone was assessed via In vivo µCT and blood collected for biochemistries to create baseline measures. Calcimimetic treatment with KP-2326 (KP) was then administered 3× weekly for 2-4 weeks. Cortical bone and biochemical parameters were repeated at study endpoint (33-37 wks of age). A group of age- and cohort-matched CKD rats (N = 4) were utilized as untreated controls. RESULTS: Untreated CKD rats had significantly increased cortical porosity over time, while porosity in KP-treated CKD rats was not significantly changed over time. Individual pore analysis revealed that pore area was significantly higher for expanding pores in untreated CKD rats compared to KP-treated CKD rats. Mechanical properties of KP-treated animal femora were similar to historical values of age-matched CKD animals and lower than those of age-matched non-diseased animals. CONCLUSION: Our pilot preclinical study demonstrates that etelcalcetide treatment can mitigate the progression of cortical bone changes in an animal model of CKD through suppression of pre-existing cortical pore expansion and limiting the size of new pore development. While stabilization of porosity is beneficial it remains likely that infilling of porosity will be needed to positively affect mechanical properties of bones in the setting of CKD.


Assuntos
Hormônio Paratireóideo , Peptídeos , Insuficiência Renal Crônica , Animais , Modelos Animais de Doenças , Masculino , Peptídeos/uso terapêutico , Projetos Piloto , Porosidade , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
12.
Biomarkers ; 26(8): 703-717, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555995

RESUMO

Fracture non-union is a significant orthopaedic problem affecting a substantial number of patients yearly. Treatment of nonunions is devastating to patients and costly to the healthcare system. Unfortunately, the diagnosis of non-union is typically made in a reactionary fashion by an orthopaedic surgeon based on clinical assessment and radiographic features several months into treatment. For this reason, investigators have been trying to develop prediction algorithms; however, these have relied on population-based approaches and lack the predictive capability necessary to make individual treatment decisions. There is also a growing body of literature focussed on identifying blood biomarkers that are associated with non-union. This review describes the research that has been done in this area. Further studies of patient-centered, precision medicine approaches will likely improve fracture non-union diagnostic/prognostic capabilities.


Assuntos
Biomarcadores/sangue , Consolidação da Fratura , Fraturas não Consolidadas/sangue , Fraturas não Consolidadas/cirurgia , Fosfatase Alcalina/sangue , Colágeno Tipo I/sangue , Citocinas/sangue , Fraturas não Consolidadas/diagnóstico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Osteocalcina/sangue , Fragmentos de Peptídeos/sangue , Peptídeos/sangue , Valor Preditivo dos Testes , Pró-Colágeno/sangue , Prognóstico , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Fatores de Tempo
13.
Vasc Med ; 26(6): 585-594, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34338093

RESUMO

INTRODUCTION: Increased oxidative stress is associated with vascular calcification in patients with chronic kidney disease (CKD). We have previously demonstrated that cellular-derived matrix vesicles (MV), but not media-derived MV, are endocytosed in the presence of phosphorus by recipient normal rat vascular smooth muscle cells (VSMC) and induce calcification through ERK1/2 and [Ca2+]i signaling. We hypothesized that these changes were mediated by increased reactive oxygen species (ROS) production. METHODS: MV were co-cultured with recipient VSMC in the presence of high phosphorus and ROS production and cell signaling assessed. RESULTS: The results demonstrated MV endocytosis led to increased ROS production in recipient VSMC with no increase in mitochondrial oxygen consumption or oxidative phosphorylation (OXPHOS), indicating the ROS was not from the mitochondria. The use of inhibitors demonstrated that endocytosis of these MV by VSMC led to a signaling cascade in the cytoplasm beginning with ERK1/2 signaling, then increased [Ca2+]i and stimulation of ROS production, mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)1/4. Media-derived MV did not induce this cascade, indicating endocytosis itself was not a factor. Furthermore, inhibition of either ERK1/2 activation or [Ca2+]i reduced vascular calcification. CONCLUSION: We conclude that endocytosis of pro-mineralizing MV can induce a series of signaling events in normal VSMC that culminate in generation of ROS via activation of NOX1/4. Understanding these pathways will allow the development of future targeted therapeutics.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Animais , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/metabolismo
14.
Biotechniques ; 71(2): 431-438, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34374302

RESUMO

The ability to study the bone microenvironment of failed fracture healing may lead to biomarkers for fracture nonunion. Herein the authors describe a technique for isolating individual cells suitable for single-cell RNA sequencing analyses from intramedullary canal tissue collected by reaming during surgery. The purpose was to detail challenges and solutions inherent to the collection and processing of intramedullary canal tissue samples. The authors then examined single-cell RNA sequencing data from fresh and reanimated samples to demonstrate the feasibility of this approach for prospective studies.


Assuntos
Fixação Intramedular de Fraturas , Análise de Sequência de RNA , Biologia , Pinos Ortopédicos , Fraturas Ósseas , Estudos Prospectivos
15.
Sci Rep ; 11(1): 9788, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963215

RESUMO

Chronic kidney disease (CKD) leads to musculoskeletal impairments that are impacted by muscle metabolism. We tested the hypothesis that 10-weeks of voluntary wheel running can improve skeletal muscle mitochondria activity and function in a rat model of CKD. Groups included (n = 12-14/group): (1) normal littermates (NL); (2) CKD, and; (3) CKD-10 weeks of voluntary wheel running (CKD-W). At 35-weeks old the following assays were performed in the soleus and extensor digitorum longus (EDL): targeted metabolomics, mitochondrial respiration, and protein expression. Amino acid-related compounds were reduced in CKD muscle and not restored by physical activity. Mitochondrial respiration in the CKD soleus was increased compared to NL, but not impacted by physical activity. The EDL respiration was not different between NL and CKD, but increased in CKD-wheel rats compared to CKD and NL groups. Our results demonstrate that the soleus may be more susceptible to CKD-induced changes of mitochondrial complex content and respiration, while in the EDL, these alterations were in response the physiological load induced by mild physical activity. Future studies should focus on therapies to improve mitochondrial function in both types of muscle to determine if such treatments can improve the ability to adapt to physical activity in CKD.


Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Músculo Esquelético/patologia , Insuficiência Renal Crônica/patologia
16.
Bone ; 146: 115885, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618073

RESUMO

BACKGROUND: During aging, there is a normal and mild loss in kidney function that leads to abnormalities of the kidney-bone metabolic axis. In the setting of increased phosphorus intake, hyperphosphatemia can occur despite increased concentrations of the phosphaturic hormone FGF23. This is likely from decreased expression of the FGF23 co-receptor Klotho (KL) with age; however, the roles of age and sex in the homeostatic responses to mild phosphate challenges remain unclear. METHODS: Male and female 16-week and 78-week mice were placed on either normal grain-based chow or casein (higher bioavailable phosphate) diets for 8 weeks. Gene expression, serum biochemistries, micro-computed tomography, and skeletal mechanics were used to assess the impact of mild phosphate challenge on multiple organ systems. Cell culture of differentiated osteoblast/osteocytes was used to test mechanisms driving key outcomes. RESULTS: Aging female mice responded to phosphate challenge by significantly elevating serum intact FGF23 (iFGF23) versus control diet; males did not show this response. Male mice, regardless of age, exhibited higher kidney KL mRNA with similar phosphate levels across both sexes. However, males and females had similar blood phosphate, calcium, and creatinine levels irrespective of age, suggesting that female mice upregulated FGF23 to maintain blood phosphorus, and compromised renal function could not explain the increased serum iFGF23. The 17ß-estradiol levels were not different between groups, and in vivo bone steroid receptor (estrogen receptor 1 [Esr1], estrogen receptor 2 [Esr2], androgen receptor [Ar]) expression was not different by age, sex, or diet. Trabecular bone volume was higher in males but decreased with both age and phosphate challenge in both sexes. Cortical porosity increased with age in males but not females. In vitro studies demonstrated that 17ß-estradiol treatment upregulated FGF23 and Esr2 mRNAs in a dose-dependent manner. CONCLUSIONS: Our study demonstrates that aging female mice upregulate FGF23 to a greater degree during a mild phosphate challenge to maintain blood phosphorus versus young female and young/old male mice, potentially due to direct estradiol effects on osteocytes. Thus, the control of phosphate intake during aging could have modifiable outcomes for FGF23-related phenotypes.


Assuntos
Hiperfosfatemia , Fosfatos , Animais , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Glucuronidase , Masculino , Camundongos , Camundongos Knockout , Osteócitos , Microtomografia por Raio-X
17.
Bone ; 143: 115632, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32927105

RESUMO

PURPOSE: Chronic kidney disease (CKD) patients have a high incidence of fracture due in part to cortical porosity. The goal of this study was to study cortical pore infilling utilizing two rodent models of progressive CKD. METHODS: Exp 1: Female C57Bl/6J mice (16-week-old) were given dietary adenine (0.2%) to induce CKD for 10 weeks after which calcium water supplementation (Ca-H2O; 1.5% and 3%) was given to suppress PTH for another 4 weeks. Exp 2: Male Cy/+ rats were aged to ~30 weeks with baseline porosity assessed using in vivo µCT. A second in vivo scan followed 5-weeks of Ca-H2O (3%) supplementation. RESULTS: Exp 1: Untreated adenine mice had elevated blood urea nitrogen (BUN), parathyroid hormone (PTH), and cortical porosity (~2.6% porosity) while Ca-H2O lowered PTH and cortical porosity (0.5-0.8% porosity). Exp 2: Male Cy/+ rats at baseline had variable porosity (0.5%-10%), but after PTH suppression via Ca-H2O, cortical porosity in all rats was lower than 0.5%. Individual pore dynamics measured via a custom MATLAB code demonstrated that 85% of pores infilled while 12% contracted in size. CONCLUSION: Ca-H2O supplementation causes net cortical pore infilling over time and imparted mechanical benefits. While calcium supplementation is not a viable clinical treatment for CKD, these data demonstrate pore infilling is possible and further research is required to examine clinically relevant therapeutics that may cause net pore infilling in CKD.


Assuntos
Hormônio Paratireóideo , Insuficiência Renal Crônica , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Ratos
18.
Am J Nephrol ; 51(5): 381-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32146472

RESUMO

BACKGROUND: Autoclaving rodent diets is common in laboratory animals, but autoclaving increases the formation of dietary advanced glycation end-products (AGE). We studied the effect of autoclaved (AC) diet alone or in combination with a diet high in bioavailable phosphorus on biochemistries of chronic kidney disease-mineral and bone disorder (CKD-MBD), intestinal gene expression, and oxidative stress. METHODS: Male CKD rats (Cy/+) and normal littermates were fed 1 of 3 diets: AC 0.7% phosphorus grain-based diet for 28 weeks (AC); AC diet for 17 weeks followed by non-autoclaved (Non-AC) 0.7% phosphorus casein diet until 28 weeks (AC + Casein); or Non-AC diet for 16 weeks followed by a Non-AC purified diet until 30 weeks (Non-AC + Casein). RESULTS: AC diets contained ~3× higher AGEs and levels varied depending on the location within the autoclave. Rats fed the AC and AC + Casein diets had higher total AGEs and oxidative stress, irrespective of kidney function. Kidney function was more severely compromised in CKD rats fed AC or AC + Casein compared to Non-AC + Casein. There was a disease-by-diet interaction for plasma phosphorus, parathyroid hormone, and c-terminal fibroblast growth factor-23, driven by high values in the CKD rats fed the AC + Casein diet. Compared to Non-AC + Casein, AC and AC + Casein-fed groups had increased expression of receptor of AGEs and intestinal NADPH oxidase dual oxidase-2, independent of kidney function. CONCLUSIONS: Autoclaving rodent diets impacts the progression of CKD and CKD-MBD, highlighting the critical importance of standardizing diets in experiments.


Assuntos
Ração Animal/efeitos adversos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Temperatura Alta/efeitos adversos , Insuficiência Renal Crônica/etiologia , Esterilização/métodos , Animais , Distúrbio Mineral e Ósseo na Doença Renal Crônica/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Produtos Finais de Glicação Avançada/administração & dosagem , Produtos Finais de Glicação Avançada/efeitos adversos , Humanos , Masculino , Estresse Oxidativo/fisiologia , Ratos , Insuficiência Renal Crônica/fisiopatologia
19.
J Ren Nutr ; 30(1): 4-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30846238

RESUMO

Phosphate binders are commonly prescribed in patients with end-stage kidney disease to prevent and treat hyperphosphatemia. These binders are usually associated with gastrointestinal distress, may bind molecules other than phosphate, and may alter the gut microbiota, altogether having systemic effects unrelated to phosphate control. Sevelamer is the most studied of the available binders for nonphosphate-related effects including binding to bile acids, endotoxins, gut microbiota-derived metabolites, and advanced glycation end products. Other binders (calcium- and noncalcium-based binders) may bind vitamins, such as vitamin K and folic acid. Moreover, the relatively new iron-based phosphate binders may alter the gut microbiota, as some of the iron or organic ligands may be used by the gastrointestinal bacteria. The objective of this narrative review is to provide the current evidence for the nonphosphate effects of phosphate binders on gastrointestinal function, nutrient and molecule binding, and the gut microbiome.


Assuntos
Cálcio/uso terapêutico , Quelantes/uso terapêutico , Trato Gastrointestinal/efeitos dos fármacos , Hiperfosfatemia/prevenção & controle , Falência Renal Crônica/complicações , Fosfatos/metabolismo , Humanos , Sevelamer/uso terapêutico
20.
J Bone Miner Res ; 35(3): 608-617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31743501

RESUMO

Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic disorder that affects blood measures of bone and mineral homeostasis, vascular calcification, and bone. We hypothesized that the accumulation of advanced glycation end-products (AGEs) in CKD may be responsible for the vascular and bone pathologies via alteration of collagen. We treated a naturally occurring model of CKD-MBD, the Cy/+ rat, with a normal and high dose of the AGE crosslink breaker alagebrium (ALT-711), or with calcium in the drinking water to mimic calcium phosphate binders for 10 weeks. These animals were compared to normal (NL) untreated animals. The results showed that CKD animals, compared to normal animals, had elevated blood urea nitrogen (BUN), PTH, FGF23 and phosphorus. Treatment with ALT-711 had no effect on kidney function or PTH, but 3 mg/kg lowered FGF23 whereas calcium lowered PTH. Vascular calcification of the aorta assessed biochemically was increased in CKD animals compared to NL, and decreased by the normal, but not high dose of ALT-711, with parallel decreases in left ventricular hypertrophy. ALT-711 (3 mg/kg) did not alter aorta AGE content, but reduced aorta expression of receptor for advanced glycation end products (RAGE) and NADPH oxidase 2 (NOX2), suggesting effects related to decreased oxidative stress at the cellular level. The elevated total bone AGE was decreased by 3 mg/kg ALT-711 and both bone AGE and cortical porosity were decreased by calcium treatment, but only calcium improved bone properties. In summary, treatment of CKD-MBD with an AGE breaker ALT-711, decreased FGF23, reduced aorta calcification, and reduced total bone AGE without improvement of bone mechanics. These results suggest little effect of ALT-711 on collagen, but potential cellular effects. The data also highlights the need to better measure specific types of AGE proteins at the tissue level in order to fully elucidate the impact of AGEs on CKD-MBD. © 2019 American Society for Bone and Mineral Research.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Preparações Farmacêuticas , Insuficiência Renal Crônica , Animais , Minerais , Ratos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...