Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371354

RESUMO

The aim of the current study was to examine how reward-associated emotional facial distractors could capture attentional resources in a demanding visual task using event-related potentials (ERPs). In the learning phase, a high- or low-reward probability was paired with angry, happy, or neutral faces. Then, in the test phase, participants performed a face-irrelevant task with no reward at stake, in which they needed to discriminate the length of two lines presented in the center of the screen while faces that were taken from the learning phase were used as distractors presented in the periphery. The behavioral results revealed no effect of distractor emotional valence since the emotional information was task-irrelevant. The ERP results in the test phase revealed a significant main effect of distractor emotional valence for the parieto-occipital P200 (170-230 ms); the mean amplitudes in both the angry- and happy-face conditions were more positive than the neutral-face condition. Moreover, we found that the high-reward association enhanced both the N170 (140-180 ms) and EPN (260-330 ms) relative to the low-reward association condition. Finally, the N2pc (270-320 ms) also exhibited enhanced neural activity in the high-reward condition compared to the low-reward condition. The absence of emotional effects indicated that task-irrelevant emotional facial stimuli did not impact behavioral or neural responses in this highly demanding task. However, reward-associated information was processed when attention was directed elsewhere, suggesting that the processing of reward-associated information worked more in an automatic way, irrespective of the top-down task demand.

2.
Transl Psychiatry ; 12(1): 236, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668086

RESUMO

The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Recompensa
3.
Bipolar Disord ; 24(4): 400-411, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34606159

RESUMO

BACKGROUND: Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS: In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS: As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS: We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Psychoradiology ; 2(1): 32-42, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38665141

RESUMO

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.

5.
Mol Psychiatry ; 26(12): 7363-7371, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385597

RESUMO

Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


Assuntos
Transtorno Depressivo Maior , Encéfalo , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Tamanho da Amostra
6.
Artigo em Inglês | MEDLINE | ID: mdl-34119573

RESUMO

OBJECTIVE: While gastrointestinal (GI) symptoms are very common in patients with major depressive disorder (MDD), few studies have investigated the neural basis behind these symptoms. In this study, we sought to elucidate the neural basis of GI symptoms in MDD patients by analyzing the changes in regional gray matter volume (GMV) and gray matter density (GMD) in brain structure. METHOD: Subjects were recruited from 13 clinical centers and categorized into three groups, each of which is based on the presence or absence of GI symptoms: the GI symptoms group (MDD patients with at least one GI symptom), the non-GI symptoms group (MDD patients without any GI symptoms), and the healthy control group (HCs). Structural magnetic resonance images (MRI) were collected of 335 patients in the GI symptoms group, 149 patients in the non-GI symptoms group, and 446 patients in the healthy control group. The 17-item Hamilton Depression Rating Scale (HAMD-17) was administered to all patients. Correlation analysis and logistic regression analysis were used to determine if there was a correlation between the altered brain regions and the clinical symptoms. RESULTS: There were significantly higher HAMD-17 scores in the GI symptoms group than that of the non-GI symptoms group (P < 0.001). Both GMV and GMD were significant different among the three groups for the bilateral superior temporal gyrus, bilateral middle temporal gyrus, left lingual gyrus, bilateral caudate nucleus, right Fusiform gyrus and bilateral Thalamus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the HC group, the GI symptoms group demonstrated increased GMV and GMD in the bilateral superior temporal gyrus, and the non-GI symptoms group demonstrated an increased GMV and GMD in the right superior temporal gyrus, right fusiform gyrus and decreased GMV in the right Caudate nucleus (GRF correction, cluster-P < 0.01, voxel-P < 0.001). Compared to the non-GI symptoms group, the GI symptoms group demonstrated significantly increased GMV and GMD in the bilateral thalamus, as well as decreased GMV in the bilateral superior temporal gyrus and bilateral insula lobe (GRF correction, cluster-P < 0.01, voxel-P < 0.001). While these changed brain areas had significantly association with GI symptoms (P < 0.001), they were not correlated with depressive symptoms (P > 0.05). Risk factors for gastrointestinal symptoms in MDD patients (p < 0.05) included age, increased GMD in the right thalamus, and decreased GMV in the bilateral superior temporal gyrus and left Insula lobe. CONCLUSION: MDD patients with GI symptoms have more severe depressive symptoms. MDD patients with GI symptoms exhibited larger GMV and GMD in the bilateral thalamus, and smaller GMV in the bilateral superior temporal gyrus and bilateral insula lobe that were correlated with GI symptoms, and some of them and age may contribute to the presence of GI symptoms in MDD patients.


Assuntos
Transtorno Depressivo Maior/patologia , Substância Cinzenta/patologia , Dor Abdominal/etiologia , Dor Abdominal/psicologia , Adulto , Encéfalo/patologia , Escalas de Graduação Psiquiátrica Breve , Núcleo Caudado/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/patologia , Tálamo/patologia
7.
J Affect Disord ; 284: 217-228, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609956

RESUMO

BACKGROUND: Functional specialization is a feature of human brain for understanding the pathophysiology of major depressive disorder (MDD). The degree of human specialization refers to within and cross hemispheric interactions. However, most previous studies only focused on interhemispheric connectivity in MDD, and the results varied across studies. Hence, brain functional connectivity asymmetry in MDD should be further studied. METHODS: Resting-state fMRI data of 753 patients with MDD and 451 healthy controls were provided by REST-meta-MDD Project. Twenty-five project contributors preprocessed their data locally with the Data Processing Assistant State fMRI software and shared final indices. The parameter of asymmetry (PAS), a novel voxel-based whole-brain quantitative measure that reflects inter- and intrahemispheric asymmetry, was reported. We also examined the effects of age, sex and clinical variables (including symptom severity, illness duration and three depressive phenotypes). RESULTS: Compared with healthy controls, patients with MDD showed increased PAS scores (decreased hemispheric specialization) in most of the areas of default mode network, control network, attention network and some regions in the cerebellum and visual cortex. Demographic characteristics and clinical variables have significant effects on these abnormalities. LIMITATIONS: Although a large sample size could improve statistical power, future independent efforts are needed to confirm our results. CONCLUSIONS: Our results highlight the idea that many brain networks contribute to broad clinical pathophysiology of MDD, and indicate that a lateralized, efficient and economical brain information processing system is disrupted in MDD. These findings may help comprehensively clarify the pathophysiology of MDD in a new hemispheric specialization perspective.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Transtorno Depressivo Maior/diagnóstico por imagem , Dominância Cerebral , Humanos , Imageamento por Ressonância Magnética
8.
Neuroimage ; 221: 117185, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711069

RESUMO

Rumination is a repetitive self-referential thinking style that is often interpreted as an expression of abnormalities of the default mode network (DMN) observed during "resting-state" in major depressive disorder (MDD). Recent evidence has demonstrated that the DMN is not unitary but can be further divided into 3 functionally heterogenous subsystems, although the subsystem mechanistically underlying rumination remains unclear. Due to the unconstrained and indirect correlational nature of previous resting-state fMRI studies on rumination's network underpinnings, a paradigm allowing direct investigation of network interactions during active rumination is needed. Here, with a modified continuous state-like paradigm, we induced healthy participants to ruminate or imagine objective scenarios (distraction, as a control condition) on 3 different MRI scanners. We compared functional connectivities (FC) of the DMN and its 3 subsystems between rumination and distraction states. Results yielded a highly reproducible and dissociated pattern. During rumination, within-DMN FC was generally decreased as compared to the distraction state. At the subsystem level, we found increased FC between the core and medial temporal lobe (MTL) subsystem as well as decreased FC between the core and dorsal medial prefrontal cortex (DMPFC) subsystem and within the MTL subsystem. Finally, subjects' behavioral measures of rumination and brooding were negatively correlated with FC between the core and DMPFC subsystems. These results suggest active rumination involves enhanced constraint by the core subsystem on the MTL subsystem and decreased coupling between the core and DMPFC subsystem, allowing for more information exchange among those involved DMN components. Furthermore, the reproducibility of our findings provides a rigorous evaluation of their validity and significance.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Imaginação/fisiologia , Rede Nervosa/fisiologia , Ruminação Cognitiva/fisiologia , Pensamento/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Adulto Jovem
9.
Neuroimage ; 206: 116287, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655111

RESUMO

Rumination is strongly and consistently correlated with depression. Although multiple studies have explored the neural correlates of rumination, findings have been inconsistent and the mechanisms underlying rumination remain elusive. Functional brain imaging studies have identified areas in the default mode network (DMN) that appear to be critically involved in ruminative processes. However, a meta-analysis to synthesize the findings of brain regions underlying rumination is currently lacking. Here, we conducted a meta-analysis consisting of experimental tasks that investigate rumination by using Signed Differential Mapping of 14 fMRI studies comprising 286 healthy participants. Furthermore, rather than treat the DMN as a unitary network, we examined the contribution of three DMN subsystems to rumination. Results confirm the suspected association between rumination and DMN activation, specifically implicating the DMN core regions and the dorsal medial prefrontal cortex subsystem. Based on these findings, we suggest a hypothesis of how DMN regions support rumination and present the implications of this model for treating major depressive disorder characterized by rumination.


Assuntos
Mapeamento Encefálico , Depressão/fisiopatologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Ruminação Cognitiva/fisiologia , Depressão/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
10.
Proc Natl Acad Sci U S A ; 116(18): 9078-9083, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979801

RESUMO

Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Mapeamento Encefálico/métodos , China , Conectoma/métodos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiopatologia , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...