Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2835-2844, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236722

RESUMO

We have developed two series of amine-functionalized zirconium (Zr) metal-organic framework-808 (MOF-808), which were produced by postsynthetic modifications to have either amino acids coordinated to Zr ions (MOF-808-AAs) or polyamines covalently bound to the chloro-functionalized structure (MOF-808-PAs). These MOF variants were comprehensively characterized by liquid-state 1H nuclear magnetic resonance (NMR) measurements and potentiometric acid-base titration to determine the amounts of amines, energy-dispersive X-ray spectroscopy to assess the extent of covalent substitution by polyamines, powder X-ray diffraction analysis to verify the maintenance of the MOF crystallinity and structure after postsynthetic modifications, nitrogen sorption isotherm measurements to confirm retention of the porosity, and water sorption isotherm measurements to find the water uptake in the pores of each member of the series. Evaluation and testing of these compounds in direct air capture (DAC) of CO2 showed improved CO2 capture performance for the functionalized forms, especially under humid conditions: In dry conditions, the l-lysine- and tris(3-aminopropyl)amine-functionalized variants, termed as MOF-808-Lys and MOF-808-TAPA, exhibited the highest CO2 uptakes at 400 ppm, measuring 0.612 and 0.498 mmol g-1, and further capacity enhancement was achieved by introducing 50% relative humidity, resulting in remarkable uptakes of 1.205 and 0.872 mmol g-1 corresponding to 97 and 75% increase compared to the dry uptakes, respectively. The mechanism underlying the enhanced uptake efficiency was revealed by 13C solid-state NMR and temperature-programmed desorption measurements, indicating the formation of bicarbonate species, and therefore a stoichiometry of 1:1 CO2 to each amine site.

2.
J Am Chem Soc ; 144(5): 2387-2396, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080872

RESUMO

Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and dl-lysine-functionalized MOF-808 (MOF-808-Gly and -dl-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied by using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. On the basis of these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Gases/química , Compostos Organometálicos/química , Umidade , Incineração , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...