Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhen Jiu ; 43(6): 669-78, 2023 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-37313561

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI. METHODS: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 µL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR. RESULTS: Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). CONCLUSION: EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Assuntos
Eletroacupuntura , Traumatismo por Reperfusão Miocárdica , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Núcleos Cerebelares , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/terapia , Receptores de GABA-A/genética , RNA Mensageiro
2.
J Neurophysiol ; 129(2): 320-332, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541603

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment. The MIRI model was established by ligating the left anterior descending (LAD) coronary artery for 30 min followed by reperfusion for 2 h. Chemogenetics, electrocardiogram (ECG) recording, ELISA, multichannel physiology recording, and immunofluorescence staining methods were combined to demonstrate that firing frequencies of neurons in the LH and expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the percentage of infarct size and the levels of cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were similar to inhibition of glutamatergic neurons in LH, also attenuated morphology of myocardial tissue was induced by MIRI. However, activation of glutamatergic neurons in LH weakened the above effects of EA pretreatment.NEW & NOTEWORTHY This study demonstrates that EA preconditioning can attenuate myocardial injury for MIRI, which is similar to inhibition of glutamatergic neurons in LH. However, chemical activation of glutamatergic neurons in LH attenuates the protective effect of EA pretreatment. These findings help better understand the mechanisms of EA to regulate cardiac function.


Assuntos
Eletroacupuntura , Traumatismo por Reperfusão Miocárdica , Humanos , Região Hipotalâmica Lateral , Miocárdio , Eletrocardiografia
3.
Radiother Oncol ; 164: 146-154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592360

RESUMO

BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has the potential to noninvasively detect expression of hypoxia inducible factor-1-alpha (HIF-1α), epidermal growth factor receptor (EGFR), and Ki-67 in nasopharyngeal carcinoma (NPC) by quantitatively measuring tumor blood flow, vascularity, and permeability. PURPOSE: We aim to explore the utility of DCE-MRI in detecting HIF-1α, EGFR, and Ki-67 expression levels using traditional Kety's/Tofts' modeling and quantitative transport mapping (QTM). MATERIALS AND METHODS: Eighty-nine NPC patients underwent DCE-MRI before treatment were enrolled. DCE-MRI was processed to generate the following kinetic parameters: |u| and D from the QTM model, tumor blood flow (TBF) from Kety's model, and Ktrans, Ve, and Kep from Tofts' model. Pretreatment levels of HIF-1α, EGFR, and Ki-67 were assessed by immunohistochemistry and classified into low and high expression groups. RESULTS: |u| (p < 0.001) and TBF (p = 0.015) values were significantly higher in the HIF-1α high-expression group compared to low-expression group. Only Ktrans (p = 0.016) was significantly higher in the EGFR high-expression group. Only |u| (p < 0.001) values were significantly higher in the Ki-67 high-expression group compared to low-expression group. Multiple linear regression analyses showed that |u| independently correlated with HIF-1α and Ki-67 expression, and Ktrans independently correlated with EGFR. The areas under the ROC curves of |u| for HIF-1α and Ki-67, and Ktrans for EGFR were 0.83, 0.74, and 0.70, respectively. CONCLUSION: |u| and Ktrans derived from DCE-MRI may be considered as noninvasive imaging markers for detecting hypoxia and proliferation in NPC patients.


Assuntos
Meios de Contraste , Neoplasias Nasofaríngeas , Receptores ErbB , Humanos , Hipóxia , Antígeno Ki-67 , Imageamento por Ressonância Magnética , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem
4.
J Acupunct Meridian Stud ; 14(6): 207-218, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35770600

RESUMO

Background: Myocardial ischemia reperfusion injury (MIRI) is an important mechanism of post-myocardial infarction injury and a main cause of death in patients with ischemic heart disease. Electroacupuncture (EA) pretreatment is effective for the prevention and treatment of MIRI, but mechanisms mediating the effects of cardiovascular disease EA treatments remain unclear. Objectives: To determine whether the lateral hypothalamus (LHA) and the cerebellar fastigial nucleus (FN) are involved in the protective effects of EA stimulation on MIRI. Methods: EA pretreatment was performed for 7 days before the establishment of the MIRI model. ST-segment changes on electrocardiograms were recorded and the Curtis-Walker arrhythmia score was used to evaluate changes in reperfusion injury. Hematoxylin-eosin staining was applied to evaluate the pathological and morphological changes in myocardial tissue. c-fos expression in the LHA and FN was determined by immunofluorescence staining. Glutamic (Glu) and γ-Aminobutyric acid (GABA) levels were measured using a high-performance liquid chromatography-electrochemical method. Results: EA pretreatment reduced ST-segment elevation, arrhythmia scores, and morphological changes in MIRI myocardial cells in rats, and decreased the c-fos protein expression in LHA/FN nuclei. MIRI was associated with an imbalance between GABA and Glu levels, whereas EA pretreatment increased GABA levels and decreased Glu levels in the LHA/FN. Conclusion: FN and LHA are involved in the EA-mediated attenuation of MIRI. Pretreatment with EA plays a protective role in the myocardium by regulating Glu and GABA release in the LHA and FN.


Assuntos
Eletroacupuntura , Traumatismo por Reperfusão Miocárdica , Animais , Núcleos Cerebelares , Região Hipotalâmica Lateral , Traumatismo por Reperfusão Miocárdica/terapia , Ratos , Ácido gama-Aminobutírico
5.
Biotechnol J ; 15(8): e2000004, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32351022

RESUMO

Toad bone not only contains the rich cartilage-like matrix but also presents low immunogenicity. It is inferred that decellularized toad bone matrix (dBECM) may provide the more profitable osteoinductive microenvironment for mesenchymal stem cells (MSCs) to promote the repair of bone defects. Herein, a hollow bone-inspired tube is first made from hydroxyapatite (HA) and poly (γ-glutamic acid) (PGA), and then MSCs/dBECM hydrogel is uniformly filled to its central cavity, constructing a biomimetic bone (dBECM + MSCs - PGA + HA). In vitro scratch and transwell experiments show that dBECM hydrogel not only effectively promotes migration and proliferation of MSCs but also induces their osteogenic differentiation. Moreover, the less inflammatory macrophages infiltrate at rat skin after subcutaneously injecting dBECM hydrogel, indicating its low potential for inflammatory attack. After implanting dBECM + MSCs - PGA + HA to critical radius defect of rabbit, X-ray and CT imaging shows that the cortex is effectively regenerated and the medullary cavity recanalization is completed at 20 weeks. Moreover, the expression of Collagen-II and OCN are obviously increased in the defect after implanting dBECM + MSCs - PGA + HA. The therapeutic mechanism of dBECM + MSCs - PGA + HA scaffold are highly associated with the enhanced angiogenesis. Collectively, the biomimetic dBECM + MSCs - PGA + HA scaffold may be a promising strategy to improve radius defect healing efficiency.


Assuntos
Anuros , Matriz Óssea , Cartilagem , Microambiente Celular , Células-Tronco Mesenquimais , Rádio (Anatomia) , Animais , Cartilagem/citologia , Cartilagem/imunologia , Diferenciação Celular , Osteogênese , Coelhos , Rádio (Anatomia)/crescimento & desenvolvimento , Rádio (Anatomia)/lesões , Ratos , Alicerces Teciduais
6.
Colloids Surf B Biointerfaces ; 172: 573-585, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218983

RESUMO

Excessive deposition of extracellular matrix (ECM) usually resulted in scar formation during wound healing, which caused skin dysfunction, such as hair loss. Basic fibroblast growth factor (bFGF) was very helpful for promoting hair follicle neogenesis and regulating the remodeling of ECM during wound healing. Because of its poor stability in wound fluids and low permeability against the dense wound scar, the repairing quality of bFGF on wound was hindered largely in clinical practice. To overcome these drawbacks, herein, a novel liposome with silk fibroin hydrogel core (bFGF-SF-LIP) was firstly prepared to stabilize bFGF, followed by insertion of laurocapam, a permeation enhancer, into the liposomal membrane to construct a skin-permeable liposome (SP-bFGF-SF-LIP). The encapsulated efficiency of bFGF was reaching to nearly 90% when ratio of drug/lipids above 1:300, and it activity was not compromised by laurocapam. SP-bFGF-SF-LIP exhibited a hydrodynamic diameter of 103.3 nm and Zeta potential of -2.31 mV. The stability of the encapsulated bFGF in wound fluid was obviously enhanced. After 24 h of incubation with wound fluid containing MMP-9, the remaining bFGF was as high as 65.4 ± 0.5% for SP-bFGF-SF-LIP, while only 2.1 ± 0.2% of free bFGF was remained. The skin-permeability of bFGF was significantly enhanced by SP-bFGF-SF-LIP and most of the encapsulated bFGF penetrated into the dermis. After treatment with SP-bFGF-SF-LIP, the morphology of hair follicle at wound zone was obviously improved and the hair regrew on the deep second scald mice model. The therapeutic mechanism was highly associated with inhibiting scar formation and promoting vascular growth in dermis. Conclusively, SP-bFGF-SF-LIP may a potential option to improve wound healing with high-quality.


Assuntos
Queimaduras/patologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Folículo Piloso/crescimento & desenvolvimento , Pele/patologia , Animais , Apoptose/efeitos dos fármacos , Líquidos Corporais/química , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroínas/química , Fibronectinas/metabolismo , Folículo Piloso/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Laminina/metabolismo , Lipossomos/ultraestrutura , Masculino , Camundongos , Células NIH 3T3 , Neovascularização Fisiológica/efeitos dos fármacos , Tamanho da Partícula , Permeabilidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Eletricidade Estática , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/patologia
7.
Oncotarget ; 9(14): 11767-11782, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29589596

RESUMO

Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN. However, the clinical application of CoQ10 has been limited because of its low water-solubility and non-specific distribution. Liposomes were supposed to be an effective way for delivering CoQ10 to kidney. CoQ10 was effectively encapsulated into the liposome (CoQ10-LIP) with a high entrapment efficiency of 86.15 %. The CoQ10-LIP exhibited a small hydrodynamic diameter (180 ± 2.1 nm) and negative zeta potential (-18.20 mV). Moreover, CoQ10-LIP was combined with ultrasound-mediated microbubble destruction (UTMD) to enhance specific distribution of CoQ10 in kidney. In early stage of diabetic mellitus (DM), rats were administrated with CoQ10-LIP followed by UTMD (CoQ10-LIP+UTMD) to prevent occurrence of DN. Results revealed that CoQ10-LIP+UTMD effectively prevented the renal morphology and function of diabetics rats from damage. The protective mechanism of CoQ10-LIP was highly associated with protecting podocyte, promoting vascular repair and inhibiting cell apoptosis. Conclusively, CoQ10-LIP in combination with UTMD might be a potential strategy to prevent occurrence of DN.

8.
Int J Nanomedicine ; 13: 681-694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440894

RESUMO

INTRODUCTION: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI). METHODS: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2)-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. RESULTS: Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis. CONCLUSION: The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.


Assuntos
Matriz Extracelular/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Heparina/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Células PC12 , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Traumatismos da Medula Espinal/patologia , Temperatura
9.
Drug Deliv ; 25(1): 364-375, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29366360

RESUMO

Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma. ICG was easily encapsulated into SFNPs with a very high encapsulation efficiency reaching to 97.7 ± 1.1%. ICG-SFNPs exhibited a spherical morphology with a mean particle size of 209.4 ± 1.4 nm and a negative zeta potential of -31.9 mV, exhibiting a good stability in physiological medium. Moreover, ICG-SFNPs showed a slow release profile of ICG in vitro, and only 24.51 ± 2.27% of the encapsulated ICG was released even at 72 h. Meanwhile, ICG-SFNPs exhibited a more stable photo-thermal effect than free ICG after exposure to near-infrared irradiation. The temperature of ICG-SFNPs rapidly increased by 33.9 °C within 10 min and maintained for a longer time. ICG-SFNPs were also easily internalized with C6 tumor cells in vitro, and a strong red fluorescence of ICG was observed in cytoplasm for cellular imaging. In vivo imaging showed that ICG-SFNPs were effectively accumulated inside tumor site of C6 glioma-bearing Xenograft nude mice through vein injection. Moreover, the temperature of tumor site was rapidly rising up to kill tumor cells after local NIR irradiation. After treatment, its growth was completely suppressed with the relative tumor volume of 0.55 ± 033 while free ICG of 33.72 ± 1.90. Overall, ICG-SFNPs may be an effective therapeutic means for intraoperative phototherapy and imaging.


Assuntos
Fibroínas/química , Glioblastoma/diagnóstico por imagem , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Nanopartículas/química , Seda/química , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Ratos
10.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035818

RESUMO

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Assuntos
Curcumina/administração & dosagem , Fibroínas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Pele/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Psoríase/patologia , Seda/química
11.
Mol Med Rep ; 16(6): 9043-9050, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28990095

RESUMO

Gastric cancer is a leading cause of cancer­associated mortality worldwide. In studies on the mechanisms of antigastric cancer drugs, autophagy and endoplasmic reticulum (ER) stress have been demonstrated to serve an active role in gastric cancer. The organic extract of Periplaneta americana (also termed American Cockroach), which is named Kangfuxin (KFX) in China, has been used clinically as a traditional Chinese medicine against disorders, including stomach bleeding, gastric ulcers, tuberculosis, burns and trauma. However, the role of KFX and its mechanism in gastric cancer remains to be elucidated. The present study aimed to determine the effects of KFX in vitro against cultured the human carcinoma SGC­7901 cell line, and to explore the potential mechanism of the anticancer effects of KFX in gastric cancer. SGC­7901 cells were treated with different concentrations of KFX for varying amounts of time. As a result, KFX treatment decreased the ratio of apoptosis regulators Bcl­2/Bax, activated ER stress and induced significant apoptosis in SGC­7901 cells. Furthermore, KFX was able to restore the ER stress activation blocked by 4­phenylbutyrate. In addition, KFX activated autophagy in SGC­7901 cells. These results demonstrated that ER stress, autophagy and the apoptosis­inducing effects of KFX in SGC­7901 cells may achieve promising anticancer effects in numerous other types of cancer. In particular, ER stress may serve an essential role in KFX­induced anticancer effects on gastric carcinoma and a secondary role in autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Materia Medica/farmacologia , Neoplasias Gástricas/patologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Biológicos , Regulação para Cima/efeitos dos fármacos
12.
Int J Pharm ; 528(1-2): 664-674, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28642201

RESUMO

Diabetic nephropathy (DN) is one of the most common and lethal microvascular complications of diabetes. This study aimed to explore whether coenzymeQ10 (CoQ10) as an antioxidant combined with ultrasound-targeted microbubble destruction (UTMD) could reverse the progress of early diabetic nephropathy (DN). CoQ10 has great potential to treat early DN. However, the clinical application of CoQ10 has been limited because of its low aqueous solubility and non-specific distribution. Therefore, CoQ10-loaded liposomes (CoQ10-lip) were prepared and combined with ultrasound microbubbles for the early theranostics of DN. CoQ10-lip exhibited a good round morphology with a diameter of 183±1.7nm and a negative zeta potential of -25.3mV, which was capable of prolonging the release of the encapsulated CoQ10. The early DN rat models were induced by streptozotocin (STZ) and confirmed by contrast-enhanced ultrasound (CEUS) and 24-h urinary albumin. After the administration of CoQ10-lip combined with the UTMD technique to rats with early DN, the morphology and function of the kidney were evaluated by ultrasonography, histological and molecular analyses. The renal hemodynamics were significantly improved, moreover, 24-h urinary protein, and oxidative stress indexes were modulated after treatment with CoQ10-lip+UTMD indicating recovery of renal function. An elevated level of Nphs2 protein and reduced caspase 3 level indicated the preservation of podocytes and inhibition of cell apoptosis after CoQ10-lip+UTMD treatment. The molecular mechanism was associated with the upregulation of Bcl-2 and the downregulation of Bax. Moreover, the combination of CoQ10-lip and ultrasound microbubbles demonstrated a better protective effect on the damaged kidney than the other groups (free CoQ10 or CoQ10-lip+/- UTMD). Conclusively, CoQ10-lip in combination with ultrasound microbubbles might be a potential strategy to reverse the progress of early DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Lipossomos/química , Microbolhas/uso terapêutico , Nanomedicina Teranóstica , Ubiquinona/análogos & derivados , Animais , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental , Masculino , Ratos , Ratos Sprague-Dawley , Ubiquinona/uso terapêutico
13.
Adv Healthc Mater ; 6(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28661050

RESUMO

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.8 ± 0.5 nm and zeta potential of -9.41 ± 0.10 mV. SF-LIP effectively improves the stability of bFGF in wound fluids. After 8 h of incubation with wound fluids at 37 °C, more than 50% of free bFGF are degraded, while only 18.6% of the encapsulated bFGF in SF-LIP are destroyed. Even after 3 d of preincubation with wound fluids, the cell proliferation activity and wound healing ability of SF-bFGF-LIP are still preserved but these are severely compromised for the conventional bFGF-liposome (bFGF-LIP). In vivo experiments reveal that SF-bFGF-LIP accelerates the wound closure of mice with deep second-degree scald. Moreover, due to the protective effect and enhanced penetration ability, SF-bFGF-LIP is very helpful to induce regeneration of vascular vessel in comparison with free bFGF or bFGF-LIP. The liposome with SF hydrogel core may be a potential carrier as growth factors for wound healing.


Assuntos
Queimaduras/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fibroínas/química , Hidrogéis/química , Lipossomos/química , Cicatrização/efeitos dos fármacos , Animais , Queimaduras/patologia , Difusão , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Fator 2 de Crescimento de Fibroblastos/química , Camundongos , Camundongos Endogâmicos C57BL , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Resultado do Tratamento , Técnicas de Fechamento de Ferimentos
14.
Int J Pharm ; 517(1-2): 383-394, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28007548

RESUMO

Extracellular matrix-based biomaterials have many advantages over synthetic polymer materials for regenerative medicine applications. In central nervous system (CNS), basic fibroblast growth factor (bFGF) is widely studied as a potential agent for Parkinson's disease (PD). However, the poor stability of bFGF hampered its clinical use. In this study, CNS-derived biologic scaffold containing bFGF was used to enhance and extend the neuroprotective effect of bFGF on PD targeted therapy. Decellularized brain extracellular matrix (dcBECM) was prepared by chemical extraction. The biocompatibility of dcBECM was evaluated using CCK-8 assay and magnetic resonance imaging (MRI). The controlled-release behavior of dcBECM containing bFGF (bFGF+dcBECM) was confirmed by ELISA assay. Furthermore, the cytocompatibility and neuroprotective effect of bFGF+dcBECM was evaluated in vitro and in vivo. From results, dcBECM showed a three-dimensional network structure with high biocompatibility. MRI of dcBECM implanted rats showed nearly seamless fusion of dcBECM with the adjoining tissues. The cumulative release rate of bFGF+dcBECM in vitro reached to 75.88% at 10h and maintained sustained release trend during the observation. ELISA results in vivo further confirmed the sustained-release behavior (from 12h to 3d) of bFGF+dcBECM in brain tissues. Among the experimental groups, bFGF+dcBECM group showed the highest cell survival rate of PD model cells, improved behavioral recovery and positive expressions of neurotrophic proteins in PD recovered rats. In conclusion, sustained neuroprotection in PD rats was achieved by using bFGF+dcBECM. The combination of dcBECM and bFGF would be a promising therapeutic strategy to realize an effective and safe alternative for CNS disease treatment.


Assuntos
Encéfalo/cirurgia , Matriz Extracelular/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neuroproteção , Doença de Parkinson/cirurgia , Transplante/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Teste de Materiais , Fatores de Crescimento Neural/metabolismo , Neuroimagem , Ratos
15.
Sci Rep ; 6: 38332, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922061

RESUMO

Because of the short half-life, either systemic or local administration of bFGF shows significant drawbacks to spinal injury. In this study, an acellular spinal cord scaffold (ASC) was encapsulated in a thermo-sensitive hydrogel to overcome these limitations. The ASC was firstly prepared from the spinal cord of healthy rats and characterized by scanning electronic microscopy and immunohistochemical staining. bFGF could specifically complex with the ASC scaffold via electrostatic or receptor-mediated interactions. The bFGF-ASC complex was further encapsulated into a heparin modified poloxamer (HP) solution to prepare atemperature-sensitive hydrogel (bFGF-ASC-HP). bFGF release from the ASC-HP hydrogel was more slower than that from the bFGF-ASC complex alone. An in vitro cell survival study showed that the bFGF-ASC-HP hydrogel could more effectively promote the proliferation of PC12 cells than a bFGF solution, with an approximate 50% increase in the cell survival rate within 24 h (P < 0.05). Compared with the bFGF solution, bFGF-ASC-HP hydrogel displayed enhanced inhibition of glial scars and obviously improved the functional recovery of the SCI model rat through regeneration of nerve axons and the differentiation of the neural stem cells. In summary, an ASC-HP hydrogel might be a promising carrier to deliver bFGF to an injured spinal cord.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Heparina/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Células PC12 , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Temperatura , Alicerces Teciduais
16.
Biomaterials ; 107: 44-60, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614158

RESUMO

Intratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL). The nanoparticles (NPs) of VES-g-ε-PLL exhibited an ultra-small hydrodynamic diameter (20.8 nm) and positive zeta potential (20.6 mV), which facilitate strong glioma spheroid penetration ability in vitro. Additionally, the hydrophobic model drug docetaxel (DTX) could be effectively encapsulated in the nanoparticles with 3.99% drug loading and 73.37% encapsulation efficiency. To prolong the retention time of DTX-loaded nanoparticles (DTX-NPs) in the tumor, intact decellularized brain extracellular matrix (dBECM) derived from healthy rats was used as a drug depot to adsorb the ultra-small DTX-NPs. The intact DTX-NPs-adsorbing dBECM scaffold was further homogenized into an injectable DTX-NPs-dBECM suspension for intratumoral administration. The DTX-NPs-dBECM suspension exhibited slower DTX release than naked DTX-NPs without compromising the tumor penetration ability of DTX-NPs. An antitumor study showed that the DTX-NPs-dBECM suspension exhibited more powerful in vitro inhibition of tumor spheroid growth than free DTX solution or DTX-NPs. Due to strong tumor penetration ability and prolonged retention, DTX-NPs-dBECM led to complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism was due to enhanced proliferation inhibition and apoptosis of tumor cells and angiogenesis inhibition of glioma after treatment with DTX-NPs-dBECM. Finally, the safety of DTX-NPs-dBECM at the therapeutic dose was demonstrated via pathological HE assay from heart, liver, spleen, lung and kidney tissues. In conclusion, permeable nanoparticle-absorbing dBECM is a potential carrier for intratumoral delivery of common chemotherapeutics.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Matriz Extracelular/química , Glioblastoma/tratamento farmacológico , Taxoides/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células/química , Preparações de Ação Retardada/síntese química , Docetaxel , Sinergismo Farmacológico , Emulsões/química , Glioblastoma/patologia , Injeções Intralesionais , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Taxoides/química , Resultado do Tratamento
17.
Nanoscale ; 8(29): 14222-36, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396404

RESUMO

Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g(-1). The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases.

18.
Cardiovasc Drugs Ther ; 30(3): 247-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947349

RESUMO

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM). From Picrosirius Red staining and TUNEL staining, the aFGF-HMB/UTMD group showed significant difference from the other groups. The cardiac collagen volume fraction (CVF) and myocardial cell apoptosis index (AI) in aFGF-HMB/UTMD group decreased to 7.2 % and 7.11 % respectively, compared with the DM group (CVF = 24.5 % and AI =20.3 % respectively). The results of myocardial microvascular density (MCD) also proved the strongest inhibition of aFGF-HMB/UTMD group on DCM progress. CD31 staining of aFGF-HMB/UTMD group reached 22 n/hrp, much higher than that of DM group (9 n/hrp). These results confirmed that the abnormalities including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and microvascular rarefaction could be suppressed by twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-HMB+/-UTMD), with the strongest improvements observed in the aFGF-HMB/UTMD group (P < 0.05 vs free aFGF or aFGF-HMB). Western blot analyses of heart tissue further revealed the highest aFGF, anti-apoptosis protein (Bcl-2), VEGF-C, pAkt, pFoxo-3a levels and strongest reduction in pro-apoptosis proteins (Bax) level in aFGF-HMB/UTMD group. Overall, aFGF-HMB combined with UTMD technique might be developed as an effective strategy to prevent DCM in future clinical therapy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Heparina/administração & dosagem , Hipoglicemiantes/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/metabolismo , Ecocardiografia , Fator 1 de Crescimento de Fibroblastos/farmacocinética , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Coração/diagnóstico por imagem , Heparina/química , Heparina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Masculino , Microbolhas , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Ondas Ultrassônicas , Proteína X Associada a bcl-2/metabolismo
19.
Cancer Chemother Pharmacol ; 77(2): 269-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666650

RESUMO

Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Glioma , Ultrassonografia de Intervenção/métodos , Animais , Antibióticos Antineoplásicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Glioma/tratamento farmacológico , Glioma/patologia , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Carga Tumoral
20.
J Control Release ; 223: 11-21, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26712588

RESUMO

Acidic fibroblast growth factor (aFGF) has shown the great potential to prevent the structural and functional injuries caused by diabetic cardiomyopathy (DCM). The present study sought to investigate the preclinical performance and mechanism of the combination therapy of aFGF-nanoparticles (aFGF-NP) and ultrasound-targeted microbubble destruction (UTMD) technique for DCM prevention. From Mason staining and TUNEL staining, aFGF-NP+UTMD group showed significant differences from the diabetes group and other groups treated with aFGF or aFGF-NP. The cardiac collagen volume fraction (CVF) and cardiac myocyte apoptosis index in aFGF-NP+UTMD group reduced to 4.15% and 2.31% respectively, compared with those in the diabetes group (20.5% and 11.3% respectively). Myocardial microvascular density (MCD) in aFGF-NP+UTMD group was up to 35n/hpf, much higher than that in the diabetes group (14n/hpf). The diabetes group showed similar results (MCD, CVF and cardiac myocyte apoptosis index) to other aFGF treatment groups (free aFGF±UTMD or aFGF-NP). Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis and metabolic could be suppressed by the different extents of twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-NP±UTMD), with the strongest improvements observed in the aFGF-NP+UTMD group. Western blot and immunohistochemical analyses of heart tissue samples further revealed the high efficiency of heart-targeted delivery and effective cardioprotection with this combination approach. Overall, this study has generated supportive data that are critical for the translation of a promising DCM prevention strategy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Microbolhas , Nanopartículas/administração & dosagem , Ondas Ultrassônicas , Animais , Apoptose/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Coração/fisiopatologia , Masculino , Camundongos , Microvasos/efeitos dos fármacos , Miocárdio/patologia , Células NIH 3T3 , Nanopartículas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...