Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Neural Eng ; 21(5)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230033

RESUMO

Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.


Assuntos
Doença de Alzheimer , Estimulação Encefálica Profunda , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Fórnice , Camundongos Transgênicos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Estimulação Encefálica Profunda/métodos , Camundongos , Imagem de Tensor de Difusão/métodos , Fórnice/diagnóstico por imagem , Biomarcadores , Masculino , Resultado do Tratamento
2.
ACS Appl Mater Interfaces ; 16(28): 36030-36046, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38951110

RESUMO

Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Humanos , Nanopartículas/química , Células Cultivadas , Nanoestruturas/química
3.
Adv Sci (Weinh) ; : e2404076, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934929

RESUMO

A ternary catalyst comprising Iridium (Ir) single-atoms (SA)s decorated on the Co-oxide supported palladium (Pd) nanoparticles (denoted as CPI-SA) is developed in this work. The CPI-SA with 1 wt.% of Ir exhibits unprecedented high mass activity (MA) of 7173 and 770 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE in alkaline ORR (0.1 m KOH), outperforming the commercial Johnson Matthey Pt catalyst (J.M.-Pt/C; 20 wt.% Pt) by 107-folds. More importantly, the high structural reliability of the Ir single-atoms endows the CPI-SA with outstanding durability, where it shows progressively increasing MA of 13 342 and 1372 mA mgIr -1, respectively, at 0.85 and 0.90 V versus RHE up to 69 000 cycles (3 months) in the accelerated degradation test (ADT). Evidence from the in situ partial fluorescence yield X-ray absorption spectroscopy (PFY-XAS) and the electrochemical analysis indicate that the Ir single-atoms and adjacent Pd domains synergistically promote the O2 splitting and subsequent desorption of hydroxide ions (OH-), respectively. Whereas the Co-atoms underneath serve as electron injectors to boost the ORR activity of the Ir single-atoms. Besides, a progressive and sharp drop in the ORR performance is observed when Ir-clusters and Ir nanoparticles are decorated on the Co-oxide-supported Pd nanoparticles.

4.
Int J Biol Sci ; 20(8): 3126-3139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904011

RESUMO

Although many cohort studies have reported that long-term exposure to particulate matter (PM) causes lung cancer, the molecular mechanisms underlying the PM-induced increases in lung cancer progression remain unclear. We applied the lung cancer cell line A549 (Parental; A549.Par) to PM for an extended period to establish a mimic PM-exposed lung cancer cell line, A549.PM. Our results indicate that A549.PM exhibits higher cell growth and proliferation abilities compared to A549.Par cells in vitro and in vivo. The RNA sequencing analysis found amphiregulin (AREG) plays a critical role in PM-induced cell proliferation. We observed that PM increases AREG-dependent lung cancer proliferation through glutamine metabolism. In addition, the EGFR/PI3K/AKT/mTOR signaling pathway is involved in PM-induced solute carrier family A1 member 5 (SLC1A5) expression and glutamine metabolism. Our findings offer important insights into how lung cancer proliferation develops upon exposure to PM.


Assuntos
Anfirregulina , Proliferação de Células , Glutamina , Neoplasias Pulmonares , Material Particulado , Anfirregulina/metabolismo , Humanos , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Material Particulado/efeitos adversos , Células A549 , Transdução de Sinais , Camundongos , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Antígenos de Histocompatibilidade Menor
5.
Int J Med Sci ; 21(6): 1064-1071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774744

RESUMO

Hyperlipidemia is notorious for causing coronary artery disease (CAD). IL-18 is a proinflammtory cytokine that contributes to the pathogenesis of CAD. Previous reports have revealed that genetic polymorphism of IL-18 is associated with its expression level as well as the susceptibility to CAD. In the present study, we aim to investigate the relationship between IL-18 single nucleotide polymorphisms (SNPs) and hyperlipidemia in the Han Chinese population in Taiwan. A total of 580 participants older than 30 were recruited from the community. We collected the demographics, self-reported disease histories, and lifestyles. We also assessed the levels of lipid profiles including total cholesterol (CHOL), triglyceride, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol. Two SNPs, rs3882891C/A (intron 5) and rs1946518A/C (promoter -607) of IL-18 were elucidated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Our results revealed that rs3882891 AA was associated with lower risk of hypercholesterolemia, higher CHOL and LDL-C in subjects (p=0.003, p=0.000 and p=0.005 separately), and rs1946518 CC was associated with hypercholesterolemia, higher CHOL and LDL-C as well (p=0.021, p=0.003 and p=0.001 separately) Furthermore, both SNPs were associated with IL-18 expression level, which was examined by Genotype-Tissue Expression (GTEx) Portal (p=0.042 and 0.016 separately). Finally, the haplotype of IL-18 was subsequently arranged in the order of rs3882891 and rs1946518. The result revealed that the AC haplotype of 2 IL-18 SNPs was also associated with lower risk of hypercholesterolemia, lower levels of CHOL and LDL-C (p=0.01, p=0.001 and 0.003). The current study is the first to report the association between IL-18 SNPs and hyperlipidemia in the Chinese Han population.


Assuntos
Predisposição Genética para Doença , Hiperlipidemias , Interleucina-18 , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático/genética , LDL-Colesterol/sangue , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Estudos de Associação Genética , Haplótipos/genética , Hiperlipidemias/genética , Interleucina-18/genética , Taiwan/epidemiologia
6.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
7.
Toxicol Appl Pharmacol ; 487: 116949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688425

RESUMO

Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Melatonina , Material Particulado , Fibrose Pulmonar , Melatonina/farmacologia , Melatonina/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Material Particulado/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular/efeitos dos fármacos , Humanos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
8.
Crit Rev Immunol ; 44(5): 71-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618730

RESUMO

Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Imunidade Inata , Neoplasias Hepáticas/terapia , Células Matadoras Naturais , Citocinas , Imunoterapia
9.
Sci Transl Med ; 16(744): eadj7257, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657026

RESUMO

Functional mapping during brain surgery is applied to define brain areas that control critical functions and cannot be removed. Currently, these procedures rely on verbal interactions between the neurosurgeon and electrophysiologist, which can be time-consuming. In addition, the electrode grids that are used to measure brain activity and to identify the boundaries of pathological versus functional brain regions have low resolution and limited conformity to the brain surface. Here, we present the development of an intracranial electroencephalogram (iEEG)-microdisplay that consists of freestanding arrays of 2048 GaN light-emitting diodes laminated on the back of micro-electrocorticography electrode grids. With a series of proof-of-concept experiments in rats and pigs, we demonstrate that these iEEG-microdisplays allowed us to perform real-time iEEG recordings and display cortical activities by spatially corresponding light patterns on the surface of the brain in the surgical field. Furthermore, iEEG-microdisplays allowed us to identify and display cortical landmarks and pathological activities from rat and pig models. Using a dual-color iEEG-microdisplay, we demonstrated coregistration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The iEEG-microdisplay holds promise to facilitate monitoring of pathological brain activity in clinical settings.


Assuntos
Encéfalo , Eletroencefalografia , Animais , Encéfalo/fisiologia , Eletroencefalografia/métodos , Suínos , Ratos , Neurônios/fisiologia , Mapeamento Encefálico/métodos , Ratos Sprague-Dawley , Eletrocorticografia/métodos , Masculino
10.
World J Gastrointest Surg ; 16(2): 622-627, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463373

RESUMO

BACKGROUND: Gallbladder rupture is common in laparoscopic cholecystectomy because the gallbladder is usually in acute or chronic inflammation status. The gallstones may sometime be spilled into the peritoneal cavity, resulting in intra-abdominal abscess if the gallstones were not retrieved. The diagnosis of intra-abdominal abscess caused by unretrieved gallstone can usually be correctly identified in the routine imaging studies, such as abdominal ultrasonography or computed tomography (CT). Here we present a case of abscess formation from unretrieved gallstone following laparoscopic cholecystectomy, which mimics the imaging findings of metastatic gallbladder adenocarcinoma. CASE SUMMARY: This case described a 78-year-old man who received laparoscopic cholecystectomy and gallbladder adenocarcinoma was diagnosed after surgery. After adjuvant chemotherapy, the following up abdominal CT showed several small nodules at right upper abdomen and peritoneal carcinomatosis is considered. Repeated laparoscopic surgery for the excision of seeding tumor was conducted and the pathological diagnosis of the nodules and mass was inflammatory tissues and gallbladder stone. CONCLUSION: Spilled gallstones are a common complication during laparoscopic cholecystectomy and some gallstones fail to be retrieved due to the size or the restricted view of laparoscopic surgery. For spilled gall bladder stones, surgeons may consider regular computerized tomography follow-up, and if necessary, laparoscopic examination can be used as a means of confirming the diagnostic and treatment.

11.
Hepatology ; 80(1): 202-222, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381525

RESUMO

BACKGROUND AND AIMS: The risk of developing HCC in chronically infected patients with AQ2 HCV with liver cirrhosis is significantly elevated. This risk remains high even after a sustained virological response with direct-acting antivirals. To date, disease-associated signatures of NK cells indicating HCC development are unclear. APPROACH AND RESULTS: This study investigated NK cell signatures and functions in 8 cohorts covering the time span of HCC development, diagnosis, and onset. In-depth analysis of NK cell profiles from patients with cirrhosis who developed HCC (HCV-HCC) after sustained virological response compared with those who remained tumor-free (HCV-noHCC) revealed increasingly dissimilar NK cell signatures over time. We identified expression patterns with persistently high frequencies of TIM-3 and CD38 on NK cells that were largely absent in healthy controls and were associated with a high probability of HCC development. Functional assays revealed that the NK cells had potent cytotoxic features. In contrast to HCV-HCC, the signature of HCV-noHCC converged with the signature found in healthy controls over time. Regarding tissue distribution, single-cell sequencing showed high frequencies of these cells in liver tissue and the invasive margin but markedly lower frequencies in tumors. CONCLUSIONS: We show that HCV-related HCC development has profound effects on the imprint of NK cells. Persistent co-expression of TIM-3hi and CD38 + on NK cells is an early indicator for HCV-related HCC development. We propose that the profiling of NK cells may be a rapid and valuable tool to assess the risk of HCC development in a timely manner in patients with cirrhosis after HCV cure.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Células Matadoras Naturais , Cirrose Hepática , Neoplasias Hepáticas , Humanos , Células Matadoras Naturais/imunologia , Cirrose Hepática/imunologia , Cirrose Hepática/etiologia , Cirrose Hepática/diagnóstico , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Resposta Viral Sustentada , Idoso , Antivirais/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/metabolismo
12.
Aging (Albany NY) ; 16(2): 1829-1844, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261743

RESUMO

The concept of osteoarthritis (OA) as a low-grade inflammatory joint disorder has been widely accepted. Many inflammatory mediators are implicated in the pathogenesis of OA. Interleukin (IL)-18 is a pleiotropic cytokine with versatile cellular functions that are pathogenetically important in immune responses, as well as autoimmune, inflammatory, and infectious diseases. IL-17, a proinflammatory cytokine mainly secreted by Th17 cells, is upregulated in OA patients. However, the role of IL-17 in OA progression is unclear. The synovial tissues collected from healthy donors and OA patients were used to detect the expression level of IL-18 by IHC stain. The OA synovial fibroblasts (OASFs) were incubated with recombinant IL-17 and subjected to Western blot, qPCR, and ELISA to examine IL-18 expression level. The chemical inhibitors and siRNAs which targeted signal pathways were used to investigate signal pathways involved in IL-17-induced IL-18 expression. The microRNAs which participated IL-18 expression were surveyed with online databases miRWalk and miRDB, followed by validation with qPCR. This study revealed significantly higher levels of IL-18 expression in synovial tissue from OA patients compared with healthy controls, as well as increased IL-18 expression in OASFs from rats with severe OA. In vitro findings indicated that IL-17 dose-dependently promoted IL-18 production in OASFs. Molecular investigations revealed that the MEK/ERK/miR-4492 axis stimulated IL-18 production when OASFs were treated with IL-17. This study provides novel insights into the role of IL-17 in the pathogenesis of OA, which may help to inform OA treatment in the future.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Ratos , Animais , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Osteoartrite/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
13.
Front Immunol ; 14: 1284669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954598

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the fourth-leading cause of all cancer-related deaths around the world. Liver transplantation, surgery, and local ablation are curative therapies for early-stage HCC. However, post-treatment outcomes can vary based on histopathologic stage. Poorly-differentiated HCC are associated with higher rates of tumor progression and lower overall survival compared to well-differentiated HCC after therapy. In this study, we aimed to characterize the cancer stem cell (CSC) profile of histopathologically-proven well and poorly-differentiated HCCs in an in-vitro environment. We characterized the stem-like profile of each type of HCC based on their surface markers and susceptibility to NK cell-mediated cytotoxicity. Methods: Flow cytometry was used to quantify differential expression of MHC-class I, CD54, and CD44 between well- and poorly-differentiated HCCs. Primary untreated NK cells, IL-2 stimulated primary NK cells, and supercharged (sNK) cell-mediated cytotoxicity was assessed against well- and poorly-differentiated HCCs. IFN-γ supernatant from each respective NK cell experimental arm was also used to induce differentiation of HCCs. Finally, we characterized the temporal NK effector cell cytotoxicity using real-time quantitative analysis of imaging and impedance (eSight study). Results: Poorly-differentiated HCCs demonstrated low surface expression of MHC-class I and CD54, and high expression of CD44. Treatment of NK cells secreted IFN-γ or IFN-γ cytokine induced differentiation in HCCs. Poorly-differentiated HCCs in comparison to well-differentiated HCC were more susceptible to NK cell-mediated cytotoxicity in primary NK cells, IL-2 stimulated primary NK cells, and sNK cells. sNK cells induced significantly higher cytotoxicity against well-differentiated HCCs in comparison to untreated or IL-2-stimulated primary NK cells. These findings were recapitulated with real-time quantitative imaging analysis. Conclusions: Poorly-differentiated HCCs were found to have surface marker patterns of CSCs, making them highly susceptible to NK cell-based immunotherapy. NK-cell based therapy can potentially be leveraged as a neoadjuvant or adjuvant therapy in poorly-differentiated HCCs. Supercharged NK cells, which can be rapidly expanded to therapeutic levels, are uniquely capable of lysing both poorly- and well-differentiated HCCs. This finding suggests that sNK cells not only exhibit enhanced features against NK cells' targets but also are capable of activating T cells to induce cytotoxicity against well-differentiated HCCs with high expression of MHC class I.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Imunoterapia
14.
Int Immunopharmacol ; 124(Pt B): 110909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722260

RESUMO

Rheumatoid arthritis (RA) is the most common autoimmune disease, affecting the joints of the hands and feet. Several chemokines and their receptors are crucial in RA pathogenesis through immune cell recruitment. C-X-C Motif Chemokine Ligand 1 (CXCL1), a chemokine for the recruitment of various immune cells, can be upregulated in patients with RA. However, the discussion on the role of CXCL1 in RA pathogenesis is insufficient. Here, we found that CXCL1 promoted cyclooxygenase-2 (COX-II) expression in a dose- and time-dependent manner in rheumatoid arthritis synovial fibroblasts (RASFs). CXCL1 overexpression in RASFs led to a significant increase in COX-II expression, while the transfection of RASFs with the shRNA plasmid resulted in a noticeable decrease in COX-II expression. Next, we delineated the molecular mechanism underlying CXCL1-promoted COX-II expression and noted that CXC chemokine receptor 2 (CXCR2), phospholipase C (PLC), and protein kinase C (PKC) signal transduction were responsible for COX-II expression after CXCL1 incubation for RASFs. Finally, we confirmed the transcriptional activation of nuclear factor κB (NF-κB) in RASFs after incubation with CXCL1. In conclusion, the current study provided a novel insight into the role of CXCL1 in RA pathogenesis.


Assuntos
Artrite Reumatoide , NF-kappa B , Humanos , NF-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Membrana Sinovial/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fosfolipases Tipo C/metabolismo , Transdução de Sinais , Quimiocinas/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Quimiocina CXCL1/metabolismo
15.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503216

RESUMO

Brain surgeries are among the most delicate clinical procedures and must be performed with the most technologically robust and advanced tools. When such surgical procedures are performed in functionally critical regions of the brain, functional mapping is applied as a standard practice that involves direct coordinated interactions between the neurosurgeon and the clinical neurology electrophysiology team. However, information flow during these interactions is commonly verbal as well as time consuming which in turn increases the duration and cost of the surgery, possibly compromising the patient outcomes. Additionally, the grids that measure brain activity and identify the boundaries of pathological versus functional brain regions suffer from low resolution (3-10 mm contact to contact spacing) with limited conformity to the brain surface. Here, we introduce a brain intracranial electroencephalogram microdisplay (Brain-iEEG-microdisplay) which conforms to the brain to measure the brain activity and display changes in near real-time (40 Hz refresh rate) on the surface of the brain in the surgical field. We used scalable engineered gallium nitride (GaN) substrates with 6" diameter to fabricate, encapsulate, and release free-standing arrays of up to 2048 GaN light emitting diodes (µLEDs) in polyimide substrates. We then laminated the µLED arrays on the back of micro-electrocorticography (µECoG) platinum nanorod grids (PtNRGrids) and developed hardware and software to perform near real-time intracranial EEG analysis and activation of light patterns that correspond to specific cortical activities. Using the Brain-iEEG-microdisplay, we precisely ideFSntified and displayed important cortical landmarks and pharmacologically induced pathological activities. In the rat model, we identified and displayed individual cortical columns corresponding to individual whiskers and the near real-time evolution of epileptic discharges. In the pig animal model, we demonstrated near real-time mapping and display of cortical functional boundaries using somatosensory evoked potentials (SSEP) and display of responses to direct electrical stimulation (DES) from the surface or within the brain tissue. Using a dual-color Brain-iEEG-microdisplay, we demonstrated co-registration of the functional cortical boundaries with one color and displayed the evolution of electrical potentials associated with epileptiform activity with another color. The Brain-iEEG-microdisplay holds the promise of increasing the efficiency of diagnosis and possibly surgical treatment, thereby reducing the cost and improving patient outcomes which would mark a major advancement in neurosurgery. These advances can also be translated to broader applications in neuro-oncology and neurophysiology.

16.
Crit Rev Immunol ; 43(1): 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522557

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Citocinas/metabolismo
17.
Crit Rev Immunol ; 43(1): 13-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522558

RESUMO

Our recent studies indicated that amyotrophic lateral sclerosis (ALS) patients suffer from significantly elevated levels of interferon-gamma (IFN-γ) secretion by natural killer (NK) and CD8+ T cells, which may be responsible for the immune-pathologies seen in central nervous system and in peripheral organs of the patients. In order to counter such elevated induction of IFN-γ in patients we designed a treatment strategy to increase anti-inflammatory cytokine interleukin-10 (IL-10) by the use of probiotic strains which significantly increase the levels of IL-10. Therefore, in this paper we demonstrate disease specific functions of Al-Pro (AJ3) formulated for the adjunct treatment of auto-immune diseases including ALS, and compared the function with CA/I-Pro (AJ4) for the treatment of cancer and viral diseases, and NK-CLK (AJ2) for maintenance of immune balance and promotion of disease prevention. The three different formulations of probiotic bacteria have distinct profiles of activation of peripheral blood mononuclear cells (PBMCs), NK, and CD8+ T cells, and their induced activation is different from those mediated by either IL-2 or IL-2 + anti-CD16 monoclonal antibodies (mAbs) or IL-2 + anti-CD3/CD28 mAbs. IL-2 + anti-CD16 mAb activation of PBMCs and NK cells had the highest IFN-γ/IL-10 ratio, whereas IL-2 combination with sAJ4 had the next highest followed by IL-2 + sAJ2 and the lowest was seen with IL-2 + sAJ3. Accordingly, the highest secretion of IFN-γ was seen when the PBMCs and NK cells were treated with IL-2 + sAJ4, intermediate for IL-2 + sAJ2 and the lowest with IL-2 + sAJ3. The levels of IFN-γ induction and the ratio of IFN-γ to IL-10 induced by different probiotic bacteria formulation in the absence of IL-2 treatment remained much lower when compared to those treated in the presence of IL-2. Of note is the difference between NK cells and CD8+ T cells in which synergistic induction of IFN-y by IL-2 + sAJ4 was significantly higher in NK cells than those seen by CD8+ T cells. Based on these results, sAJ3 should be effective in alleviating auto-immunity seen in ALS since it will greatly regulate the levels and function of IFN-γ negatively, decreasing overactivation of cytotoxic immune effectors and prevention of death in motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Antineoplásicos , Humanos , Interleucina-10/farmacologia , Esclerose Lateral Amiotrófica/terapia , Leucócitos Mononucleares , Interleucina-2 , Citocinas , Interferon gama , Antineoplásicos/farmacologia , Anticorpos Monoclonais
18.
Crit Rev Immunol ; 43(1): 27-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522559

RESUMO

Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neurons. The causes of ALS are heterogeneous, and are only partially understood to date. We studied percentage and function of immune cell subsets in particular natural killer (NK) and CD8+ T cells in an ALS patient and compared the results to those obtained from his genetically identical healthy twin in a longitudinal study. We found several basic mechanisms which were potentially involved in the disease induction and progression. Our findings demonstrate that ALS patient's peripheral blood contained higher NK and B cells and, lower T cell percentages compared with the healthy twin brother's peripheral blood. Significantly increased interferon-gamma secretion by anti-CD3/28 monoclonal antibody-treated peripheral blood mononuclear cells, and sorted CD8+ T cells were observed in the ALS patient, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism of ALS progression. Significant increase in NK cell function due to genetic mutations in ALS associated genes may partly be responsible for the increase expansion and function of CD8+ T cells with effector/memory phenotype, in addition to direct activation and expansion of antigen specific T cells by such mutations. Weekly N-acetyl cysteine infusion to block cell death in patient in addition to a number of other therapies listed in this paper were not effective, and even though the treatments might have extended the patient's life, it was not curative. Therefore, activated CD8+ T and NK cells are likely cells targeting motor neurons in the patient, and strategies should be designed to decrease the aggressive nature of these cells to achieve longer lasting therapeutic benefits.

19.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299704

RESUMO

The catalytic conversion of CO2 into valuable commodities has the potential to balance ongoing energy and environmental issues. To this end, the reverse water-gas shift (RWGS) reaction is a key process that converts CO2 into CO for various industrial processes. However, the competitive CO2 methanation reaction severely limits the CO production yield; therefore, a highly CO-selective catalyst is needed. To address this issue, we have developed a bimetallic nanocatalyst comprising Pd nanoparticles on the cobalt oxide support (denoted as CoPd) via a wet chemical reduction method. Furthermore, the as-prepared CoPd nanocatalyst was exposed to sub-millisecond laser irradiation with per-pulse energies of 1 mJ (denoted as CoPd-1) and 10 mJ (denoted as CoPd-10) for a fixed duration of 10 s to optimize the catalytic activity and selectivity. For the optimum case, the CoPd-10 nanocatalyst exhibited the highest CO production yield of ∼1667 µmol g-1catalyst, with a CO selectivity of ∼88% at a temperature of 573 K, which is a 41% improvement over pristine CoPd (~976 µmol g-1catalyst). The in-depth analysis of structural characterizations along with gas chromatography (GC) and electrochemical analysis suggested that such a high catalytic activity and selectivity of the CoPd-10 nanocatalyst originated from the sub-millisecond laser-irradiation-assisted facile surface restructure of cobalt oxide supported Pd nanoparticles, where atomic CoOx species were observed in the defect sites of the Pd nanoparticles. Such an atomic manipulation led to the formation of heteroatomic reaction sites, where atomic CoOx species and adjacent Pd domains, respectively, promoted the CO2 activation and H2 splitting steps. In addition, the cobalt oxide support helped to donate electrons to Pd, thereby enhancing its ability of H2 splitting. These results provide a strong foundation to use sub-millisecond laser irradiation for catalytic applications.

20.
Environ Toxicol ; 38(8): 1905-1913, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37126650

RESUMO

Pulmonary fibrosis is known as an incurable lung disorder with irreversible progression of chronic injury, myofibroblast proliferation, extracellular matrix (ECM) accumulation, and tissue scarring. Atmospheric particulate matter 2.5 (PM2.5 ) is implicated as a risk factor of several diseases, especially lung diseases such as pulmonary fibrosis. The molecular mechanism which participates PM2.5 -induced pulmonary fibrosis in type II alveolar cells (AEII) has yet to be determined. Our results proved that short- and long-term exposure to PM2.5 significantly stimulated epithelial-mesenchymal transition (EMT) activity in AEII cells, according to, changes in gene signature analyzed by RNA-seq and cell morphology. Furthermore, Gene Ontology (GO) enrichment analysis also suggested that mitochondrial dysfunction was related to progression of pulmonary fibrosis in AEII after PM2.5 exposure. We observed a marked decline in mitochondria membrane potential (MMP), as well as fragmented mitochondria, in AEII cells exposed to PM2.5 , which suggests that energy metabolism is suppressed after PM2.5 exposure. We also confirmed that PM2.5 exposure could influence the expression levels of Mfn1, Mfn2, and Drp1 in AEII. Pretreatment of mitochondrial fusion promoter M1 was able to reverse mitochondrial dysfunction as well as EMT in AEII. These data suggested the key role of mitochondrial fragmentation in AEII, which was induced by PM2.5 exposure, and participated pathogenesis of pulmonary fibrosis. Finally, we investigated the response of lung tissue exposed to PM2.5 in vivo. The data indicated that the lung tissue exposed to PM2.5 obviously induced collagen accumulation. Moreover, IHC results revealed that PM2.5 enhanced Drp1 expression but suppressed Mfn1 and Mfn2 expression in lung tissue. The current study provides novel insight of pulmonary fibrosis caused by PM2.5 exposure.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Pulmão/patologia , Material Particulado/toxicidade , Transição Epitelial-Mesenquimal , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA