Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34255775

RESUMO

Planting soybeans (Glycine max (L.) Merr.) in tea gardens decreased soil pH in theory but increased it in practice. This controversy was addressed in this study by treating the tea garden soil consecutively with different parts of a soybean cover crop: aboveground soybean (ASB) parts, underground soybean (USB) root residues, and the whole soybean (WSB) plants. In comparison with the control, the soil pH increased significantly after the third ASB and WSB treatments, but there was no significant change in the soil pH in the USB treatment. Concordantly, the soil exchangeable acidity decreased significantly and the soil exchangeable bases increased significantly in the ASB and WSB treatments. The exchangeable acidity increased in the USB treatment, but the amount of the increased acidity was less than that of the increased bases in the ASB treatment, resulting in a net increase in the exchangeable bases in the WSB treatment. Soybean planting and covering also increased the microbial richness and abundance significantly, which led to significantly more soil organic matters. Exchangeable K+ and Mg2+, and soil organic matters played significantly positive roles and exchangeable Al3+ played negative roles in improving soil pH. Our data suggest that consecutive plantings of soybean cover crop increase the pH of the acidified tea garden soil.


Assuntos
Glycine max/metabolismo , Fabaceae/metabolismo , Solo , Poluentes do Solo/metabolismo
2.
Front Oncol ; 11: 649290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094936

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive human malignancy and intrinsically resistant to conventional therapies. YAP1, as a key downstream effector of the Hippo pathway, plays an important role in tumorigenesis including PDAC. Alternative mRNA splicing of YAP1 results in at least 8 protein isoforms, which are divided into two subgroups (YAP1-1 and YAP1-2) based on the presence of either a single or double WW domains. We investigated the functions and regulatory mechanisms of YAP1-1 and YAP1-2 in PDAC cells induced by TGF-ß to undergo epithelial-to-mesenchymal transition (EMT). CRISPR-Cas9 and shRNA were used to silence YAP1 expression in pancreatic cancer cells. Re-constituted lentivirus mediated overexpression of each single YAP1 isoform was generated in the parental knockout L3.6 cells. EMT was induced by treatment with TGF-ß, EGF and bFGF in parental and the constructed stable cell lines. Western blot and qPCR were used to detect the expression of EMT markers. Scratch wound healing and transwell assays were used to detect cell migration. The stability and subcellular localization of YAP1 proteins were determined by Western blot analysis, immunofluorescence, as well as ubiquitination assays. We showed that TGF-ß, EGF and bFGF all significantly promoted EMT in PDAC cells, which was inhibited by knockdown of YAP1 expression. Interestingly, YAP1-1 stable cells exhibited a stronger migratory ability than YAP1-2 cells under normal culture condition. However, upon TGF-ß treatment, L3.6-YAP1-2 cells exhibited a stronger migratory ability than L3.6-YAP1-1 cells. Mechanistically, TGF-ß treatment preferentially stabilizes YAP1-2 and enhances its nuclear localization. Furthermore, TGF-ß-induced EMT and YAP1-2 activity were both blocked by inhibition of AKT signaling. Our results showed that both YAP1-1 and YAP1-2 isoforms are important mediators in the EMT process of pancreatic cancer. However, YAP1-2 is more important in mediating TGF-ß-induced EMT, which requires AKT signaling.

4.
Geophys Res Lett ; 47(4): e2019GL085838, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32713977

RESUMO

Marine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cl y ) and bromine (Br y ). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212-569 Tg/a) in the GEOS-Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Cl y and Br y increase (20-40%), leading to decreased ozone (-3 to -6%). Consequently, OH decreases (-3 to -5%), which increases the methane lifetime (3-6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions.

5.
Theranostics ; 10(10): 4422-4436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292505

RESUMO

YAP1 is a key mediator of the Hippo pathway capable of exerting a profound effect on organ size as well as tumorigenesis. Alternative mRNA splicing of human YAP1 results in at least 8 protein isoforms that differ within the 2nd WW motif and the transcriptional activation domain. Methods: To investigate the isoform-specific differences in their mRNA expression, transcriptional activity and tumor-promoting function, we cloned cDNA encoding all of the eight YAP1 protein isoforms. Then, we examined their mRNA expression, subcellular localization, transcriptional regulation properties, interactions with key regulatory partners, and protein stability in response to changes in cell density, as well as their effects on pancreatic cancer cell malignancy both in vitro and in vivo. Results: Multiple YAP1 mRNA isoforms are expressed in commonly used pancreatic cancer lines as well as human pancreatic cancer PDX lines. Based on the analysis of heterologous reporter and endogenous target genes, all YAP1 isoforms are capable of activating transcription, albeit to a different extent. Importantly, we unveiled a marked discrepancy between the mRNA and protein expression levels of the YAP1-1 and YAP1-2 isoforms. We further discovered that the YAP1-2 isoform, which contains two tandem WW motifs, is less stable at the protein level, particularly at high cell densities. Mechanistically, we found that the presence of the 2nd WW motif in YAP1-2 facilitates the de novo formation of the YAP1-2/AMOT/LATS1 complex and contributes to a stronger binding of YAP1-2 to LATS1 and subsequently increased YAP1-2 ubiquitination and degradation by ß-TRCP. Conclusion: Our data reveals a potent effect of YAP1-1 on pancreatic cancer malignancy in vitro and in vivo and provides novel mechanistic insight into isoform-specific and cell density-dependent regulation of YAP1 stability, as well as its impact on cancer malignancy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Domínios WW , Proteínas de Sinalização YAP , Neoplasias Pancreáticas
6.
Biochemistry ; 43(9): 2550-7, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14992592

RESUMO

Endostatin is a potent angiogenesis inhibitor. The structure of endostatin is unique in that its secondary structure is mainly irregular loops and beta-sheets and contains only a small fraction of alpha-helices with two pairs of disulfide bonds in a nested pattern. We choose human endostatin as a model system to study the folding mechanism of this kind. Nuclear magnetic resonance (NMR), tryptophan emission fluorescence, and circular dichroism (CD) were used to monitor the unfolding process of endostatin upon acid titration. Urea-induced unfolding was used to measure the stability of endostatin under different conditions. Our results show that endostatin is very acid-resistant; some native structure still remains even at pH 2 as evidenced by (1)H NMR. Trifluoroethanol (TFE) destabilizes native endostatin, while it makes endostatin even more acid-resistant in the low pH region. Stability measurement of endostatin suggests that endostatin is still in native structure at pH 3.5 despite the decreased stability. Acid-induced unfolding of endostatin is reversible, although it requires a long time to reach equilibrium below pH 3. Surprisingly, the alpha-helical content of endostatin is increased when it is unfolded at pH 1.6, and the alpha-helical content of the polypeptide chain of unfolded endostatin increases linearly with TFE concentration in the range of 0-30%. This observation indicates that the polypeptide chain of unfolded endostatin has an intrinsic alpha-helical propensity. Our discoveries may provide clues for refolding endostatin more efficiently. The acid-resistance property of endostatin may have biological significance in that it cannot be easily digested by proteases in an acidic environment such as in a lysosome in the cell.


Assuntos
Endostatinas/química , Concentração de Íons de Hidrogênio , Dobramento de Proteína , Ácido Acético/química , Medição da Troca de Deutério , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/química , Acetato de Sódio/química , Espectrometria de Fluorescência , Termodinâmica , Fatores de Tempo , Trifluoretanol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...