Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 6122-6129, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665530

RESUMO

Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target. Yet, within those libraries, the performance of linear vs. mono- or bicyclic peptides has rarely been studied. Indeed, a key parameter to perform such a comparison is to use a display protocol and cyclization chemistry that enables the formation of all 3 formats in equal quality and diversity. Here, we developed a simple, efficient and fast mRNA display protocol which meets these criteria and can be used to generate highly diverse libraries of thioether cyclized polycyclic peptides. As a proof of concept, we selected peptides against fibroblast growth factor receptor 3c (FGFR3c) and compared the different formats regarding affinity, specificity, and human plasma stability. The peptides with the best KD's and stability were identified among bicyclic peptide hits, further strengthening the body of evidence pointing at the superiority of this class of molecules and providing functional and selective inhibitors of FGFR3c.

2.
J Biol Chem ; 298(5): 101894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378129

RESUMO

Extensive portions of the human genome have unknown function, including those derived from transposable elements. One such element, the DNA transposon Hsmar1, entered the primate lineage approximately 50 million years ago leaving behind terminal inverted repeat (TIR) sequences and a single intact copy of the Hsmar1 transposase, which retains its ancestral TIR-DNA-binding activity, and is fused with a lysine methyltransferase SET domain to constitute the chimeric SETMAR gene. Here, we provide a structural basis for recognition of TIRs by SETMAR and investigate the function of SETMAR through genome-wide approaches. As elucidated in our 2.37 Å crystal structure, SETMAR forms a dimeric complex with each DNA-binding domain bound specifically to TIR-DNA through the formation of 32 hydrogen bonds. We found that SETMAR recognizes primarily TIR sequences (∼5000 sites) within the human genome as assessed by chromatin immunoprecipitation sequencing analysis. In two SETMAR KO cell lines, we identified 163 shared differentially expressed genes and 233 shared alternative splicing events. Among these genes are several pre-mRNA-splicing factors, transcription factors, and genes associated with neuronal function, and one alternatively spliced primate-specific gene, TMEM14B, which has been identified as a marker for neocortex expansion associated with brain evolution. Taken together, our results suggest a model in which SETMAR impacts differential expression and alternative splicing of genes associated with transcription and neuronal function, potentially through both its TIR-specific DNA-binding and lysine methyltransferase activities, consistent with a role for SETMAR in simian primate development.


Assuntos
Genoma Humano , Histona-Lisina N-Metiltransferase/genética , Primatas/genética , Animais , Evolução Biológica , Encéfalo/metabolismo , Elementos de DNA Transponíveis/genética , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Sequências Repetidas Invertidas , Lisina/genética , Primatas/metabolismo , Transposases/química
3.
Nat Commun ; 11(1): 3446, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651359

RESUMO

The piggyBac DNA transposon is used widely in genome engineering applications. Unlike other transposons, its excision site can be precisely repaired without leaving footprints and it integrates specifically at TTAA tetranucleotides. We present cryo-EM structures of piggyBac transpososomes: a synaptic complex with hairpin DNA intermediates and a strand transfer complex capturing the integration step. The results show that the excised TTAA hairpin intermediate and the TTAA target adopt essentially identical conformations, providing a mechanistic link connecting the two unique properties of piggyBac. The transposase forms an asymmetric dimer in which the two central domains synapse the ends while two C-terminal domains form a separate dimer that contacts only one transposon end. In the strand transfer structure, target DNA is severely bent and the TTAA target is unpaired. In-cell data suggest that asymmetry promotes synaptic complex formation, and modifying ends with additional transposase binding sites stimulates activity.


Assuntos
Elementos de DNA Transponíveis/genética , Transposases/metabolismo , Microscopia Crioeletrônica , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína , Transposases/genética
4.
J Med Chem ; 62(4): 1971-1988, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30653918

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or -oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we identified hot spots for binding of small organic molecules experimentally in high resolution crystal structures of APE1 and computationally through the use of FTMAP analysis ( http://ftmap.bu.edu/ ). Guided by these hot spots, a library of drug-like macrocycles was docked and then screened for inhibition of APE1 endonuclease activity. In an iterative process, hot-spot-guided docking, characterization of inhibition of APE1 endonuclease, and cytotoxicity of cancer cells were used to design next generation macrocycles. To assess target selectivity in cells, selected macrocycles were analyzed for modulation of DNA damage. Taken together, our studies suggest that macrocycles represent a promising class of compounds for inhibition of APE1 in cancer cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Lactamas Macrocíclicas/farmacologia , Lactonas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Lactamas Macrocíclicas/síntese química , Lactamas Macrocíclicas/metabolismo , Lactonas/síntese química , Lactonas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
5.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 713-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599863

RESUMO

Transposable elements have played a critical role in the creation of new genes in all higher eukaryotes, including humans. Although the chimeric fusion protein SETMAR is no longer active as a transposase, it contains both the DNA-binding domain (DBD) and catalytic domain of the Hsmar1 transposase. The amino-acid sequence of the DBD has been virtually unchanged in 50 million years and, as a consequence, SETMAR retains its sequence-specific binding to the ancestral Hsmar1 terminal inverted repeat (TIR) sequence. Thus, the DNA-binding activity of SETMAR is likely to have an important biological function. To determine the structural basis for the recognition of TIR DNA by SETMAR, the design of TIR-containing oligonucleotides and SETMAR DBD variants, crystallization of DBD-DNA complexes, phasing strategies and initial phasing experiments are reported here. An unexpected finding was that oligonucleotides containing two BrdUs in place of thymidines produced better quality crystals in complex with SETMAR than their natural counterparts.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas Recombinantes de Fusão/química , Selenometionina/química , Transposases/química , Sequência de Bases , Sítios de Ligação , Bromodesoxiuridina/química , Bromodesoxiuridina/metabolismo , Cristalização , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Sequências Repetidas Invertidas , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Selenometionina/metabolismo , Timidina/química , Timidina/metabolismo , Transposases/genética , Transposases/metabolismo , Difração de Raios X
6.
DNA Repair (Amst) ; 41: 32-41, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27078577

RESUMO

Although chemotherapy-induced peripheral neuropathy (CIPN) affects approximately 5-60% of cancer patients, there are currently no treatments available in part due to the fact that the underlying causes of CIPN are not well understood. One contributing factor in CIPN may be persistence of DNA lesions resulting from treatment with platinum-based agents such as cisplatin. In support of this hypothesis, overexpression of the base excision repair (BER) enzyme, apurinic/apyrimidinic endonuclease 1 (APE1), reduces DNA damage and protects cultured sensory neurons treated with cisplatin. Here, we address stimulation of APE1's endonuclease through a small molecule, nicorandil, as a means of mimicking the beneficial effects observed for overexpression of APE1. Nicorandil, was identified through high-throughput screening of small molecule libraries and found to stimulate APE1 endonuclease activity by increasing catalytic efficiency approximately 2-fold. This stimulation is primarily due to an increase in kcat. To prevent metabolism of nicorandil, an approved drug in Europe for the treatment of angina, cultured sensory neurons were pretreated with nicorandil and daidzin, an aldehyde dehydrogenase 2 inhibitor, resulting in decreased DNA damage but not altered transmitter release by cisplatin. This finding suggests that activation of APE1 by nicorandil in cisplatin-treated cultured sensory neurons does not imbalance the BER pathway in contrast to overexpression of the kinetically faster R177A APE1. Taken together, our results suggest that APE1 activators can be used to reduce DNA damage induced by cisplatin in cultured sensory neurons, although further studies will be required to fully assess their protective effects.


Assuntos
Cisplatino/efeitos adversos , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Nicorandil/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Animais , Células Cultivadas , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Transdução de Sinais/efeitos dos fármacos
7.
Biochemistry ; 53(41): 6520-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25251148

RESUMO

Apurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg²âº-dependent reaction in which the phosphodiester backbone is cleaved 5' of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg²âº, Mn²âº, and apo-APE1 determined at 1.4, 2.2, and 1.65 Å, respectively, representing two of the highest resolution structures yet reported for APE1. In our structures, a single well-ordered Mn²âº ion was observed coordinated by D70 and E96; the Mg²âº site exhibited disorder modeled as two closely positioned sites coordinated by D70 and E96 or E96 alone. Direct metal binding analysis of wild-type, D70A, and E96A APE1, as assessed by differential scanning fluorimetry, indicated a role for D70 and E96 in binding of Mg²âº or Mn²âº to APE1. Consistent with the disorder exhibited by Mg²âº bound to the active site, two different conformations of E96 were observed coordinated to Mg²âº. A third conformation for E96 in the apo structure is similar to that observed in the APE1-DNA-Mg²âº complex structure. Thus, binding of Mg²âº in three different positions within the active site of APE1 in these crystal structures corresponds directly with three different conformations of E96. Taken together, our results are consistent with the initial capture of metal by D70 and E96 and repositioning of Mg²âº facilitated by the structural plasticity of E96 in the active site.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Magnésio/química , Manganês/química , Modelos Moleculares , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ácido Glutâmico/química , Humanos , Cinética , Magnésio/metabolismo , Manganês/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Maleabilidade , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 289(15): 10930-10938, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24573677

RESUMO

Metnase (or SETMAR) arose from a chimeric fusion of the Hsmar1 transposase downstream of a protein methylase in anthropoid primates. Although the Metnase transposase domain has been largely conserved, its catalytic motif (DDN) differs from the DDD motif of related transposases, which may be important for its role as a DNA repair factor and its enzymatic activities. Here, we show that substitution of DDN(610) with either DDD(610) or DDE(610) significantly reduced in vivo functions of Metnase in NHEJ repair and accelerated restart of replication forks. We next tested whether the DDD or DDE mutants cleave single-strand extensions and flaps in partial duplex DNA and pseudo-Tyr structures that mimic stalled replication forks. Neither substrate is cleaved by the DDD or DDE mutant, under the conditions where wild-type Metnase effectively cleaves ssDNA overhangs. We then characterized the ssDNA-binding activity of the Metnase transposase domain and found that the catalytic domain binds ssDNA but not dsDNA, whereas dsDNA binding activity resides in the helix-turn-helix DNA binding domain. Substitution of Asn-610 with either Asp or Glu within the transposase domain significantly reduces ssDNA binding activity. Collectively, our results suggest that a single mutation DDN(610) → DDD(610), which restores the ancestral catalytic site, results in loss of function in Metnase.


Assuntos
Reparo do DNA por Junção de Extremidades , Replicação do DNA , Histona-Lisina N-Metiltransferase/química , Motivos de Aminoácidos , Asparagina/química , Sequência de Bases , Domínio Catalítico , Núcleo Celular/metabolismo , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Histonas/química , Humanos , Dados de Sequência Molecular , Ligação Proteica , Interferência de RNA , Transposases/metabolismo
9.
Biochemistry ; 52(17): 2955-66, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23597102

RESUMO

The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen-deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 µM are required to inhibit APE1's endonuclease activity. To determine the role of E3330's negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1's redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC(50) values (8.5 and 7 µM) lower than those produced with E3330 (20 and 55 µM, respectively). Thus, E3330's negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluorometria , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Ativação Transcricional
10.
Biochemistry ; 51(2): 695-705, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22148505

RESUMO

Apurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1's redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1. To determine whether these three cysteines, C65, C93, and C99, were sufficient for redox activity, all other cysteines were substituted with alanine, and this protein was shown to be fully redox-active. Mutants with impaired redox activity failed to stimulate cell proliferation, establishing an important role for APE1's redox activity in cell growth. Disulfide bond formation upon oxidation of APE1 was analyzed by proteolysis of the protein followed by mass spectrometry analysis. Within 5 min of exposure to hydrogen peroxide, a single disulfide bond formed between C65 and C138 followed by the formation of three additional disulfide bonds within 15 min; 10 total disulfide bonds formed within 1 h. A single mixed-disulfide bond involving C99 of APE1 was observed for the reaction of oxidized APE1 with thioredoxin (TRX). Disulfide-bonded APE1 or APE1-TRX species were further characterized by size exclusion chromatography and found to form large complexes. Taken together, our data suggest that APE1 is a unique redox factor with properties distinct from those of other redox factors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Dissulfetos/química , Animais , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cisteína , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Modelos Moleculares , Mutação , Oxirredução/efeitos dos fármacos , Propionatos/farmacologia , Conformação Proteica , Tiorredoxinas/metabolismo
11.
Protein Expr Purif ; 80(1): 68-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21605679

RESUMO

Secreted phospholipase A2s form a large family of proteins involved in diverse biological and pathophysiological processes. Group IIE secreted phospholipase A2 (sPLA2-IIE) is one of the latest discovered members of this family. Previous studies revealed that the expression profile of sPLA2-IIE was restricted to a few tissue types including brain, heart, lung and placenta compared to the broad expression profile of other isoforms. Accumulating evidence suggests that sPLA2-IIE might play a pivotal role in the progression of inflammatory processes. However, functional study of sPLA2-IIE was hindered by the low yield of soluble expressed protein. In this study, we have expressed human and mouse sPLA2-IIE in Escherichia coli in the form of inclusion bodies. The inclusion bodies were dissolved, purified and refolded in a step-wise dialysis approach and further purified. We obtained soluble and active proteins for human and mouse sPLA2-IIE with a final yield of 1.1 and 1.2 mg/500 mL bacterial culture, respectively. The refolded sPLA2-IIEs exhibited similar calcium and pH dependence of their enzymatic activity with those expressed in COS cells. This protein expression and purification protocol will facilitate the further structural and functional studies of human and mouse sPLA2-IIEs.


Assuntos
Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/metabolismo , Redobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Expressão Gênica , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/isolamento & purificação , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/genética , Camundongos , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...