Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2307529120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956293

RESUMO

Marine reserves are considered essential for sustainable fisheries, although their effectiveness compared to traditional fisheries management is debated. The effect of marine reserves is mostly studied on short ecological time scales, whereas fisheries-induced evolution is a well-established consequence of harvesting. Using a size-structured population model for an exploited fish population of which individuals spend their early life stages in a nursery habitat, we show that marine reserves will shift the mode of population regulation from low size-selective survival late in life to low, early-life survival due to strong resource competition. This shift promotes the occurrence of rapid ecological cycles driven by density-dependent recruitment as well as much slower evolutionary cycles driven by selection for the optimal body to leave the nursery grounds, especially with larger marine reserves. The evolutionary changes increase harvesting yields in terms of total biomass but cause disproportionately large decreases in yields of larger, adult fish. Our findings highlight the importance of carefully considering the size of marine reserves and the individual life history of fish when managing eco-evolutionary marine systems to ensure both population persistence as well as stable fisheries yields.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Peixes , Biomassa , Pesqueiros , Dinâmica Populacional
2.
Ecol Evol ; 13(10): e10597, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869439

RESUMO

Leonurus japonicus Houtt. is a traditional Chinese medicinal plant with high medicinal and edible value. Wild L. japonicus resources have reduced dramatically in recent years. This study predicted the response of distribution range of L. japonicus to climate change in China, which provided scientific basis for the conservation and utilization. In this study, 489 occurrence points of L. japonicus were selected based on GIS technology and spThin package. The default parameters of MaxEnt model were adjusted by using ENMeva1 package of R environment, and the optimized MaxEnt model was used to analyze the distribution of L. japonicus. When the feature combination in the model parameters is hing and the regularization multiplier is 1.5, the MaxEnt model has a higher degree of optimization. With the AUC of 0.830, our model showed a good predictive performance. The results showed that L. japonicus were widely distributed in the current period. The maximum temperature of warmest month, the min temperature of coldest month, the precipitation of wettest month, the precipitation of driest month, and altitude were the main environmental factors affecting the distribution of L. japonicus. Under the three climate change scenarios, the suitable distribution area of L. japonicus will range shift to high latitudes, indicating that the distribution of L. japonicus has a strong response to climate change. The regional change rate is the lowest under the SSP126-2090s scenario and the highest under the SSP585-2090s scenario.

3.
Natl Sci Rev ; 8(10): nwab025, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34858605

RESUMO

The extent to which key factors at the global scale influence plant biomass allocation patterns remains unclear. Here, we provide a theory about how biotic and abiotic factors influence plant biomass allocation and evaluate its predictions using a large global database for forested communities. Our analyses confirm theoretical predictions that temperature, precipitation, and plant height and density jointly regulate the quotient of leaf biomass and total biomass, and that they have a much weaker effect on shoot (leaf plus stem) biomass fractions at a global scale. Moreover, biotic factors have larger effects than abiotic factors. Climatic variables act equally on shoot and root growth, and differences in plant body size and age, as well as community species composition, which vary with climate in ways that drown out the variations in biomass fractions. The theory and data presented here provide mechanistic explanations of why climate has little effect on biomass fractions.

4.
Nat Commun ; 12(1): 5350, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504089

RESUMO

Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification.


Assuntos
Biodiversidade , Clima Desértico , Fungos/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química , China , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Geografia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/classificação , Microbiologia do Solo , Especificidade da Espécie , Água/metabolismo
5.
Ecol Evol ; 10(21): 12372-12384, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209295

RESUMO

Recent studies have demonstrated the great advantages of marine reserves in solving bycatch problems by maintaining the persistence (i.e., avoid extinction) of endangered species without sacrificing the fisheries yields of target species. However, transient phenomena rather than equilibrium states of population dynamics still require further research. Here, with a simple and general model, the transient dynamics of the target fish species are investigated under management which minimizes extinction risk of the bycatch species. An interesting finding is that fisheries yields can strongly fluctuate even if population density both inside and outside marine reserve only slightly varies (or vice versa), leading to transient inconsistency between the population densities and fisheries yields. This finding suggests that population density dynamics of the target fish species cannot be used to predict the transient phenomena of fisheries yields (or vice versa) in fisheries management. However, the unpredictability can be receded as the sensitivity analyses show that a large marine reserve size and low escapement rate can shorten the transient duration.

6.
ACS Appl Mater Interfaces ; 12(40): 45641-45647, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937064

RESUMO

Dynamic and real-time monitoring of the motion state of soft actuators is of great significance for optimizing their performance. However, present noncontact measurement approaches based on diffractive groove arrays fabricated by imprinting have some limitation, e.g., the grooves should be processed before the solidification of soft materials or the depth and period of grooves cannot be flexibly adjusted. Here, a flexible and high-efficiency fabrication approach carbon-assisted laser interference lithography (CLIL) for periodical groove structures with structural color is proposed. This technique is to irradiate the interference laser on the PDMS surface coated by a carbon layer, which is used for enhanced laser absorption. The processing parameters are systematically studied and optimized to achieve a bright structural color. Benefiting from the advantages of CLIL, the structural color can be processed on a solidified transparent surface with controllable characteristics such as groove period and depth. Lastly, the motion of an electric-driven actuator can be real-time quantified by calibrating the relationship between the observation angle and the observed structural color.

7.
Opt Lett ; 45(14): 3929-3932, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667321

RESUMO

Femtosecond-laser-induced two-photon polymerization has distinct advantages in micro-nanofabrication due to its intrinsic three-dimensional processing capability and high precision with sub-100 nanometer fabrication resolution. However, the high resolution causes a drawback in fabricating large-scale structures due to unacceptably long processing times. To solve this problem, we applied the patterned focus as the basic element for scanning processing. Theoretically, the relationship between patterned-focus scanning parameters and the uniformity of scanned light field was analyzed and optimized. Experimentally, we quantitatively investigated the relationship between the microstructure surface quality and the parameters of patterned-focus scanning. Based on above, we put forward a hybrid method that combines the femtosecond laser patterned exposure with direct-writing fabrication to rapidly fabricate large-scale microfluidic devices for various practical applications.

8.
Am Nat ; 195(3): 534-546, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097035

RESUMO

The ontogeny of seed plants usually involves a dormant dehydrated state and the breaking of dormancy and germination, which distinguishes it from that of most organisms. Seed germination and seedling establishment are critical ontogenetic stages in the plant life cycle, and both are fueled by respiratory metabolism. However, the scaling of metabolic rate with respect to individual traits remains poorly understood. Here, we tested metabolic scaling theory during seed germination and early establishment growth using a recently developed model and empirical data collected from 41 species. The results show that (i) the mass-specific respiration rate (Rm) was weakly correlated with body mass, mass-specific N content, and mass-specific C content; (ii) Rm conformed to a single Michaelis-Menten curve as a function of tissue water content; and (iii) the central parameters in the model were highly correlated with DNA content and critical enzyme activities. The model offers new insights and a more integrative scaling theory that quantifies the combined effects of tissue water content and body mass on respiratory metabolism during early plant ontogeny.


Assuntos
Embriófitas/fisiologia , Plântula/fisiologia , Sementes/fisiologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...