Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361825

RESUMO

The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1ß (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Ratos , Animais , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/metabolismo , Parvalbuminas/metabolismo , Giro do Cíngulo/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/metabolismo , Regulação para Cima , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ratos Sprague-Dawley , Interneurônios/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806192

RESUMO

The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α-necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α-necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.


Assuntos
Neuralgia , Fator de Necrose Tumoral alfa , Citocinas , Humanos , Transtornos da Memória , Necroptose , Neuralgia/metabolismo , Neuroimunomodulação , Fator de Necrose Tumoral alfa/metabolismo
3.
Biochem Biophys Res Commun ; 617(Pt 2): 41-47, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689841

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, with the incidence in men being about twice as compared to women. Gender differences may provide clues for finding key targets that mediate the death of dopaminergic (DA) neurons in PD. Luteinizing hormone (LH), analog of human chorionic gonadotropin (hCG), and their receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), are associated with the pathogenesis of PD. Movement-related symptoms are partially improved by hCG in PD patients. However, the relationship between hCG and PD, as well as its roles in mediating DA neuronal death, has not been elucidated. In this study, we investigated the potential of hCG as a treatment during PD progression. After establishment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models, we found that hCG restored the decrease of LHCGR activity caused by down-regulation of LH in the substantia nigra. Furthermore, the reduction of LHCGR activity led to DA neuronal death through knocking down the LHCGR in DA neurons by AAV-mTH-shRNA. Treatment with hCG alleviated the DA neuronal death induced by MPTP. Finally, hCG exerted neuroprotective effects by inhibiting the activation of glycogen synthase kinase 3 beta (GSK3ß) in our MPTP-induced PD mouse and MPP+-treated SH-SY5Y cell models. Together, these results demonstrate that hCG exerts neuroprotective effects for PD through LHCGR, and the inhibition of GSK3ß activation is involved in this protective effect, suggesting that hCG can be taken as a potential therapeutic for the treatment of PD.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Gonadotropina Coriônica/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Substância Negra/patologia
4.
J Neuroinflammation ; 19(1): 162, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725625

RESUMO

BACKGROUND: Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus result in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first-order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. METHODS: The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC glutamatergic neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling. RESULTS: Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC glutamatergic neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. CONCLUSIONS: The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain.


Assuntos
Hiperalgesia , Neuralgia , Animais , Gânglios Espinais/metabolismo , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Interleucina-6/metabolismo , Mamíferos/metabolismo , Neuralgia/metabolismo , Doenças Neuroinflamatórias , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Immunol ; 13: 809971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185898

RESUMO

Purpose: Deficient mismatch repair (dMMR) is an established biomarker for the response to the programmed cell death (PD)-1 inhibitors in metastatic colorectal cancer (mCRC). Although patients with dMMR mCRC could achieve a high incidence of disease control and favorable progression-free survival (PFS), reported response rates to PD-1 inhibitors are variable from 28% to 52%. We aimed to explore the additional predictive biomarkers associated with response to anti-PD-1 immunotherapy in patients with dMMR mCRC. Methods: This multicenter cohort study enrolled patients with dMMR mCRC receiving anti-PD-1 immunotherapy at the Sixth Affiliated Hospital of Sun Yat-sen University and Sun Yat-sen University Cancer Center between December 2016 and December 2019. The total information of 20 peripheral blood biomarkers, including T cells (frequency of CD4+ T cell, frequency of CD8+ T cell, and ratio of CD4+/CD8+), carcinoembryonic antigen (CEA), inflammatory markers, and lipid metabolism markers, was collected. The association between response or survival and peripheral blood parameters was analyzed. Results: Among the tested parameters, the ratio of CD4+/CD8+ and frequency of CD4+ T cell were significantly associated with PFS (p = 0.023, p = 0.012) and overall survival (OS; p = 0.027, p = 0.019) in a univariate analysis. A lower level of CD4+/CD8+ ratio or frequency of CD4+ T cell showed a significant association with better overall response rates (ORRs; p = 0.03, p = 0.01). The ratio of CD4+/CD8+ and frequency of CD4+ T cell maintained significance in multivariate Cox model for PFS (HR = 9.23, p = 0.004; HR = 4.83, p = 0.02) and OS (HR = 15.22, p = 0.009; HR = 16.21, p = 0.025). Conclusion: This study indicated that the ratio of CD4+/CD8+ and the frequency of CD4+ T cell might be crucial independent biomarkers within dMMR mCRC to better identify patients for anti-PD-1 immunotherapy. If validated in prospective clinical trials, the ratio of CD4+/CD8+ and the frequency of CD4+ T cell might aid in guiding the treatment of PD-1 inhibitors among patients with dMMR mCRC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA , Adulto , Idoso , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estudos de Coortes , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Adulto Jovem
6.
Neurobiol Dis ; 130: 104456, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31028871

RESUMO

Injury associated pain involves subjective perception and emotional experience. The anterior cingulate cortex (ACC) is a key area involved in the affective component of pain processing. However, the neuroimmune mechanisms underlying enhanced ACC excitability following peripheral nerve injury are still not fully understood. Our previous work has shown that tumor necrosis factor-alpha (TNF-α) overexpression leads to peripheral afferent hyperexcitability and synaptic transmission potentiation in spinal cord. Here, we aimed to reveal the potential role of ACC TNF-α in ACC hyperexcitability and neuropathic pain. c-Fos, a widely used neuronal activity marker, was induced especially in contralateral ACC early [postoperative (PO) 1 h] and later (PO day 7 and 10) during the development of neuropathic pain. Spared nerve injury (SNI) elevated TNF-α level in contralateral ACC from PO day 5 to 14, delayed relative to decreased ipsilateral paw withdrawal threshold apparent from PO day 1 to 14. Microinjection of anti-TNF-α antibody into the ACC completely eliminated c-Fos overexpression and greatly attenuated pain aversion and mechanical allodynia induced by SNI, suggesting an important role of ACC TNF-α in the pain aversiveness and pain maintenance. Furthermore, modulating ACC pyramidal neurons via a Gi-coupled human M4 muscarinic receptor (hM4Di) or a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD), greatly changed the ACC TNF-α level and the mechanical paw withdrawal threshold. The positive interactions between TNF-α and ACC neurons might modulate the cytokine microenvironment thus contribute to the neuropathic pain.


Assuntos
Giro do Cíngulo/metabolismo , Neuralgia/metabolismo , Limiar da Dor/fisiologia , Células Piramidais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
7.
Neuroscience ; 376: 142-151, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477696

RESUMO

Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems' approach based perspective for treating neuropathic pain.


Assuntos
Calpaína/metabolismo , Neuralgia/metabolismo , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Calpaína/administração & dosagem , Calpaína/antagonistas & inibidores , Modelos Animais de Doenças , Lateralidade Funcional , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Vértebras Lombares , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Limiar da Dor/fisiologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Tato
8.
J Neurochem ; 145(2): 154-169, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29423951

RESUMO

Previous work from our laboratory showed that motor nerve injury by lumbar 5 ventral root transection (L5-VRT) led to interleukin-6 (IL-6) over-expression in bilateral spinal cord, and that intrathecal administration of IL-6 neutralizing antibody delayed the induction of mechanical allodynia in bilateral hind paws. However, early events and upstream mechanisms underlying spinal IL-6 expression following L5-VRT require elucidation. The model of L5-VRT was used to induce neuropathic pain, which was assessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Calpain-2 (CALP2, a calcium-dependent protease) knockdown or over-expression and microglia depletion were conducted intrathecally. Western blots and immunohistochemistry were performed to explore the possible mechanisms. Here, we provide the first evidence that both IL-6 and CALP2 levels are increased in lumbar spinal cord within 30 min following L5-VRT. IL-6 and CALP2 co-localized in both spinal dorsal horn (SDH) and spinal ventral horn. Post-operative (PO) increase in CALP2 in ipsilateral SDH was evident at 10 min PO, preceding increased IL-6 at 20 min PO. Knockdown of spinal CALP2 by intrathecal CALP2-shRNA administration prevented VRT-induced IL-6 overproduction in ipsilateral spinal cord and alleviated bilateral mechanical allodynia. Spinal microglia activation also played a role in early IL-6 up-regulation. Macrophage/microglia markers ED1/Iba1 were increased at 30 min PO, while glial fibrillary acidic protein (astrocyte) and CNPase (oligodendrocyte) markers were not. Increased Iba1 was detected as early as 20 min PO and peaked at 3 days. Morphology changed from a small soma with fine processes in resting cells to an activated ameboid shape. Depletion of microglia using Mac-1-saporin partially prevented IL-6 up-regulation and attenuated VRT-induced bilateral mechanical allodynia. Taken together, our findings provide evidence that increased spinal cord CALP2 and microglia cell activation may have early causative roles in IL-6 over-expression following motor nerve injury. Agents that inhibit CALP2 and/or microglia activation may therefore prove valuable for treating neuropathic pain.


Assuntos
Calpaína/biossíntese , Interleucina-6/biossíntese , Microglia/metabolismo , Neurônios Motores/metabolismo , Neuralgia/metabolismo , Raízes Nervosas Espinhais/lesões , Animais , Axotomia , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/metabolismo , Regulação para Cima
9.
Brain Behav Immun ; 44: 37-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25150005

RESUMO

Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.


Assuntos
Calpaína/metabolismo , Gânglios Espinais/enzimologia , Interleucina-6/metabolismo , Neuralgia/enzimologia , Neurônios/enzimologia , Animais , Calpaína/farmacologia , Hiperalgesia/enzimologia , Hiperalgesia/etiologia , Masculino , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Espectrina/metabolismo , Raízes Nervosas Espinhais/lesões , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...