Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Fish Physiol Biochem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649597

RESUMO

The Onychostoma macrolepis have a unique survival strategy, overwintering in caves and returning to the river for reproduction in summer. The current knowledge on the developmental status of its testes during winter and summer is still undiscovered. We performed RNA-seq analysis on O. macrolepis testes between January and June, using the published genome (NCBI, ASM1243209v1). Through KEGG and GO enrichment analysis, we were able to identify 2111 differentially expressed genes (DEGs) and demonstrate their functions in signaling networks associated with the development of organism. At the genomic level, we found that during the overwintering phase, genes associated with cell proliferation (ccnb1, spag5, hdac7) were downregulated while genes linked to testicular fat metabolism (slc27a2, scd, pltp) were upregulated. This indicates suppression of both mitosis and meiosis, thereby inhibiting energy expenditure through genetic regulation of testicular degeneration. Furthermore, in January, we observed the regulation of autophagy and apoptosis (becn1, casp13), which may have the function of protecting reproductive organs and ensuring their maturity for the breeding season. The results provide a basis for the development of specialized feed formulations to regulate the expression of specific genes, or editing of genes during the fish egg stage, to ensure that the testes of O. macrolepis can mature more efficiently after overwintering, thereby enhancing reproductive performance.

2.
J Cell Physiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666419

RESUMO

Glutathione peroxisomal-5 (Gpx5) promotes the elimination of H2O2 or organic hydrogen peroxide, and plays an important role in the physiological process of resistance to oxidative stress (OS). To directly and better understand the protection of Gpx5 against OS in epididymal cells and sperm, we studied its mechanism of antioxidant protection from multiple aspects. To more directly investigate the role of Gpx5 in combating oxidative damage, we started with epididymal tissue morphology and Gpx5 expression profiles in combination with the mouse epididymal epithelial cell line PC1 (proximal caput 1) expressing recombinant Gpx5. The Gpx5 is highly expressed in adult male epididymal caput, and its protein signal can be detected in the sperm of the whole epididymis. Gpx5 has been shown to alleviate OS damage induced by 3-Nitropropionic Acid (3-NPA), including enhancing antioxidant activity, reducing mitochondrial damage, and suppressing cell apoptosis. Gpx5 reduces OS damage in PC1 and maintains the well-functioning extracellular vesicles (EVs) secreted by PC1, and the additional epididymal EVs play a role in the response of sperm to OS damage, including reducing plasma membrane oxidation and death, and increasing sperm motility and sperm-egg binding ability. Our study suggests that GPX5 plays an important role as an antioxidant in the antioxidant processes of epididymal cells and sperm, including plasma membrane oxidation, mitochondrial oxidation, apoptosis, sperm motility, and sperm-egg binding ability.

3.
Cell Mol Life Sci ; 81(1): 112, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433139

RESUMO

Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/genética , Calcitriol/farmacologia , Cromatina , Linhagem Celular , Dano ao DNA
4.
Mol Biotechnol ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875653

RESUMO

Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomarkers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranulum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for the diagnosis and treatment of CLC.

5.
Diabetes Metab Syndr Obes ; 16: 1731-1743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323855

RESUMO

Background: Profilin-1 (PFN1) regulates the dynamic balance of actin and plays an important role in cell functions as a hub protein in signaling molecule interaction networks. Dysregulation of PFN1 is related to pathologic kidney diseases. Diabetic nephropathy (DN) was recently reported as an inflammatory disorder, however, the molecular mechanisms of PFN1 in DN remain unclear. Therefore, the present study was conducted to explore the molecular and bioinformatic characteristics of PFN1 in DN. Methods: Bioinformatics analyses were performed on the chip of database in DN kidney tissues. A cellular model of DN was established in human renal tubular epithelial cells (HK-2) induced by high glucose. The PFN1 gene was overexpressed or knocked-down to investigate its function in DN. Flow cytometry was used to detect cell proliferation and apoptosis. PFN1 and proteins in the related signaling pathways were evaluated by Western blotting. Results: The expression of PFN1 was significantly increased in DN kidney tissues (P < 0.001) and was correlated with a high apoptosis-associated score (Pearson's correlation = 0.664) and cellular senescence-associated score (Pearson's correlation = 0.703). PFN1 protein was mainly located in cytoplasm. Overexpression of PFN1 promoted apoptosis and blocked the proliferation of HK-2 cells treated with high levels of glucose. Knockdown of PFN1 led to the opposite effects. Additionally, we found that PFN1 was correlated with the inactivation of the Hedgehog signaling pathway in HK-2 cells treated with high levels of glucose. Conclusion: PFN1 might play an integral role in the regulation of cell proliferation and apoptosis during DN development by activating the Hedgehog signaling pathway. This study provided molecular and bioinformatic characterizations of PFN1, and contributed to the understanding of the molecular mechanisms leading to DN.

6.
Cereb Cortex ; 33(12): 7896-7903, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928180

RESUMO

This study aimed to investigate the aging of the glymphatic system in healthy adults, and to determine whether this change is correlated with the brain charts and neuropsychological functioning. Two independent brain 3.0 T MRI datasets were analyzed: a public dataset and our hospital-own dataset from two hospitals. The function of the glymphatic system was quantified by diffusion analysis along the perivascular space (ALPS) index via an automatic method. Brain charts were calculated online. Correlations of the ALPS index with the brain charts, age, gender, and neuropsychological functioning, as well as differences in ALPS index across age groups, were assessed. A total of 161 healthy volunteers ranging in age from 20 to 87 years were included. ALPS index was negatively correlated with the age in both independent datasets. Compared with that of the young group, the ALPS index was significantly lower in the elderly group. No significant difference was found in the ALPS index between different genders. In addition, the ALPS index was not significantly correlated with the brain charts and neuropsychological functioning. In conclusion, the aging of glymphatic system exists in healthy adults, which is not correlated with the changes of brain charts and neuropsychological functioning.


Assuntos
Sistema Glinfático , Adulto , Humanos , Feminino , Masculino , Idoso , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Sistema Glinfático/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Envelhecimento , Imageamento por Ressonância Magnética/métodos , Neuroimagem
7.
Theranostics ; 12(11): 5034-5050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836807

RESUMO

Background: Given the importance of microvascular injury in infarct formation and expansion, development of therapeutic strategies for microvascular protection against myocardial ischemia/reperfusion injury (IRI) is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of the SGLT2 inhibitor dapagliflozin (DAPA) against cardiac microvascular dysfunction mediated by IRI. Methods: DAPA effects were evaluated both in vivo, in mice subjected to IRI, and in vitro, in human coronary artery endothelial cells (HCAECs) exposed to hypoxia/reoxygenation (H/R). DAPA pretreatment attenuated luminal stenosis, endothelial swelling, and inflammation in cardiac microvessels of IRI-treated mice. Results: In H/R-challenged HCAECs, DAPA treatment improved endothelial barrier function, endothelial nitric oxide synthase (eNOS) activity, and angiogenic capacity, and inhibited H/R-induced apoptosis by preventing cofilin-dependent F-actin depolymerization and cytoskeletal degradation. Inhibition of H/R-induced xanthine oxidase (XO) activation and upregulation, sarco(endo)plasmic reticulum calcium-ATPase 2 (SERCA2) oxidation and inactivation, and cytoplasmic calcium overload was further observed in DAPA-treated HCAECs. DAPA also suppressed calcium/Calmodulin (CaM)-dependent kinase II (CaMKII) activation and cofilin phosphorylation, and preserved cytoskeleton integrity and endothelial cell viability following H/R. Importantly, the beneficial effects of DAPA on cardiac microvascular integrity and endothelial cell survival were largely prevented in IRI-treated SERCA2-knockout mice. Conclusions: These results indicate that DAPA effectively reduces cardiac microvascular damage and endothelial dysfunction during IRI through inhibition of the XO-SERCA2-CaMKII-cofilin pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/farmacologia , Animais , Compostos Benzidrílicos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Células Endoteliais/metabolismo , Glucosídeos , Humanos , Isquemia/metabolismo , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia
8.
BMC Med Genomics ; 15(1): 79, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379245

RESUMO

Genes associated with specific neurocognitive phenotypes in Williams-Beuren syndrome are still controversially discussed. This study identified nine patients with atypical deletions out of 111 patients with Williams-Beuren syndrome; these deletions included seven smaller deletions and two larger deletions. One patient had normal neurodevelopment with a deletion of genes on the distal side of the Williams-Beuren syndrome chromosomal region, including GTF2I and GTF2IRD1. However, another patient retained these genes but showed neurodevelopmental abnormalities. By comparing the genotypes and phenotypes of patients with typical and atypical deletions and previous reports in the literature, we hypothesize that the BAZ1B, FZD9, and STX1A genes may play an important role in the neurodevelopment of patients with WBS.


Assuntos
Transtornos do Neurodesenvolvimento , Síndrome de Williams , Receptores Frizzled , Genótipo , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Sintaxina 1 , Fatores de Transcrição/genética , Síndrome de Williams/genética , Síndrome de Williams/psicologia
9.
Front Mol Biosci ; 9: 805235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300115

RESUMO

Objective: Ischemic cardiomyopathy (ICM) is a major cardiovascular state associated with prominently increased morbidity and mortality. Our purpose was to detect reliable gene signatures for ICM through integrated feature selection strategies. Methods: Transcriptome profiles of ICM were curated from the GEO project. Classification models, including least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest, were adopted for identifying candidate ICM-specific genes for ICM. Immune cell infiltrates were estimated using the CIBERSORT method. Expressions of candidate genes were verified in ICM and healthy myocardial tissues via Western blotting. JC-1 staining, flow cytometry, and TUNEL staining were presented in hypoxia/reoxygenation (H/R)-stimulated H9C2 cells with TRMT5 deficiency. Results: Following the integration of three feature selection methods, we identified seven candidate ICM-specific genes including ASPN, TRMT5, LUM, FCN3, CNN1, PCNT, and HOPX. ROC curves confirmed the excellent diagnostic efficacy of this combination of previous candidate genes in ICM. Most of them presented prominent interactions with immune cell infiltrates. Their deregulations were confirmed in ICM than healthy myocardial tissues. TRMT5 expressions were remarkedly upregulated in H/R-stimulated H9C2 cells. TRMT5 deficiency enhanced mitochondrial membrane potential and reduced apoptosis in H/R-exposed H9C2 cells. Conclusion: Collectively, our findings identified reliable gene signatures through combination strategies of diverse feature selection methods, which facilitated the early detection of ICM and revealed the underlying mechanisms.

10.
Eur J Radiol ; 146: 110094, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34906852

RESUMO

BACKGROUND: Parotid tumours (PTs) have a variety of pathological types, and the surgical procedures differ depending on the tumour type. However, accurate diagnosis of PTs from the current preoperative examinations is unsatisfactory. METHODS: This retrospective study was approved by the Ethics Committee of our hospital, and the requirement for informed consent was waived. A total of 73 patients with PTs, including 55 benign and 18 malignant tumours confirmed by surgical pathology, were enrolled. All patients underwent diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), susceptibility-weighted imaging (SWI), T2-weighted imaging (T2WI), and T1-weighted imaging (T1WI). The signal uniformity and capsule on T2WI, apparent diffusion coefficient (ADC) derived from DWI, semi-quantitative parameter time-intensity curve (TIC) pattern, and quantitative parameters including transfer constant (Ktrans), extravascular extracellular volume fraction (Ve), wash-out constant (Kep) calculated from DCE-MRI, and intratumoural susceptibility signal (ITSS) obtained from SWI were assessed and compared between benign and malignant PTs. Logistic regression analysis was used to select the predictive parameters for the classification of benign and malignant parotid gland tumours, and receiver operating characteristic (ROC) curve analysis was used to evaluate their diagnostic performance. RESULTS: Malignant PTs tended to exhibit a type C TIC pattern, whereas benign tumours tended to be type A and B (p < 0.001). Benign PTs had less ITSS than malignant tumours (p < 0.001). Multivariate analyses showed that ADC, Ve, and ITSS were predictors of tumour classification. ROC analysis showed that the area under the curve (AUC) of ADC, Ve, ITSS, and ADC combined with Ve were 0.623, 0.615, 0.826, and 0.782, respectively, in differentiating between malignant and benign PTs. When ITSS was added, the AUCs of ADC, Ve, and ADC combined with Ve increased to 0.882, 0.848, and 0.930, respectively. CONCLUSION: SWI offers incremental diagnostic value to DWI and DCE-MRI in the characterisation of parotid gland tumours.


Assuntos
Neoplasias Parotídeas , Meios de Contraste , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Glândula Parótida , Neoplasias Parotídeas/diagnóstico por imagem , Curva ROC , Estudos Retrospectivos
11.
Front Cardiovasc Med ; 8: 747802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595225

RESUMO

Objective: Myocardial ischemia reperfusion (I/R) damage is a life-threatening vascular emergency after myocardial infarction. Here, we observed the cardioprotective effect of long non-coding RNA (lncRNA) PVT1 knockdown against myocardial I/R damage. Methods: This study constructed a myocardial I/R-induced mouse model and a hypoxia/reoxygenation (H/R)-treated H9C2 cells. PVT1 expression was examined via RT-qPCR. After silencing PVT1 via shRNA against PVT1, H&E, and Masson staining was performed to observe myocardial I/R damage. Indicators of myocardial injury including cTnI, LDH, BNP, and CK-MB were examined by ELISA. Inflammatory factors (TNF-α, IL-1ß, and IL-6), Gasdermin D (GSDMD), and Caspase1 were detected via RT-qPCR, western blot, immunohistochemistry, or immunofluorescence. Furthermore, CCK-8 and flow cytometry were presented for detecting cell viability and apoptosis. Results: LncRNA PVT1 was markedly up-regulated in myocardial I/R tissue specimens as well as H/R-induced H9C2 cells. Silencing PVT1 significantly lowered serum levels of cTnI, LDH, BNP, and CK-MB in myocardial I/R mice. H&E and Masson staining showed that silencing PVT1 alleviated myocardial I/R injury. PVT1 knockdown significantly lowered the production and release of inflammatory factors as well as inhibited the expression of GSDMD-N and Caspase1 in myocardial I/R tissue specimens as well as H/R-induced H9C2 cells. Moreover, silencing PVT1 facilitated cell viability and induced apoptosis of H/R-treated H9C2 cells. Conclusion: Our findings demonstrated that silencing PVT1 could alleviate myocardial I/R damage through suppressing GSDMD-mediated pyroptosis in vivo and in vitro. Thus, PVT1 knockdown may offer an alternative therapeutic strategy against myocardial I/R damage.

12.
Stem Cells Int ; 2021: 5555590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484348

RESUMO

METHODS: Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). RESULTS: Cell senescence detected by SA-ß-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. CONCLUSIONS: Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.

13.
Eur J Med Genet ; 64(11): 104314, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34481090

RESUMO

OBJECTIVE: Atrial septal defect, secundum (ASD Ⅱ, OMIM: 603642) is the second common congenital heart defect (CHD) in China. However, the genetic etiology of familial ASD II remains elusive. METHODS AND RESULTS: Using whole-exome sequencing (WES) and Sanger sequencing, we identified a novel myosin heavy chain 6 (MYH6) gene insertion variation, NM_002471.3: c.5465_5470dup (Arg1822_Glu1823dup), in a large Chinese Han family with ASD II. The variant Arg1822_Glu1823dup co-segregated with the disease in this family with autosomal dominant inheritance. The insertion variant located in the coiled-coil domain of the MYH6 protein, which is highly conserved across homologous myosin proteins and species. In transfected myoblast C2C12 cell lines, the MYH6 Arg1822_Glu1823dup variant significantly impaired myofibril formation and increased apoptosis but did not significantly reduce cell viability. Furthermore, molecular simulations revealed that the Arg1822_Glu1823dup variant impaired the myosin α-helix, increasing the stability of the coiled-coil myosin dimer, suggesting that this variant has an effect on the coiled-coil domain self-aggregation. These findings indicate that Arg1822_Glu1823dup variant plays a crucial role in the pathogenesis of ASD II. CONCLUSION: Our findings expand the spectrum of MYH6 variations associated with familial ASD II and may provide a molecular basis in genetic counseling and prenatal diagnosis for this Chinses family.


Assuntos
Miosinas Cardíacas/genética , Comunicação Interatrial/genética , Mutagênese Insercional , Cadeias Pesadas de Miosina/genética , Adulto , Animais , Apoptose , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sobrevivência Celular , Criança , Feminino , Comunicação Interatrial/metabolismo , Comunicação Interatrial/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Linhagem , Conformação Proteica em alfa-Hélice , Estabilidade Proteica
14.
BMC Med Genomics ; 14(1): 199, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362365

RESUMO

BACKGROUND: Practical biosignatures and thorough understanding of regulatory processes of hypertrophic obstructive cardiomyopathy (HOCM) are still lacking. METHODS: Firstly, public data from GSE36961 and GSE89714 datasets of Gene Expression Omnibus (GEO), Gene database of NCBI (National Center of Biotechnology Information) and Online Mendelian Inheritance in Man (OMIM) database were merged into a candidate gene set of HOCM. Secondly, weighted gene co-expression network analysis (WGCNA) for the candidate gene set was carried out to determine premier co-expressed genes. Thirdly, significant regulators were found out by virtue of a multi-factor regulatory network of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), microRNAs (miRNAs) and transcription factors (TFs) with molecule interreactions from starBase v2.0 database and TRRUST v2 database. Ultimately, HOCM unsupervised clustering and "tsne" dimensionality reduction was employed to gain hub genes, whose classification performance was evaluated by a multinomial model of lasso logistic regression analysis binded with receiver operating characteristic (ROC) curve. RESULTS: Two HOCM remarkably-interrelated modules were from WGCNA, followed by the recognition of 32 crucial co-expressed genes. The multi-factor regulatory network disclosed 7 primary regulatory agents, containing lncRNAs (XIST, MALAT1, and H19), TFs (SPI1 and SP1) and miRNAs (hsa-miR-29b-39 and has-miR-29a-3p). Four clusters of HOCM and 4 hub genes (COMP, FMOD, AEBP1 and SULF1) significantly expressing in preceding four subtypes were obtained, while ROC curve demonstrated satisfactory performance of clustering and 4 genes. CONCLUSIONS: Our consequences furnish valuable resource which may bring about prospective mechanistic and therapeutic anatomization in HOCM.


Assuntos
Redes Reguladoras de Genes
15.
Int J Nanomedicine ; 16: 4197-4208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188469

RESUMO

INTRODUCTION: Intracellular protein delivery is emerging as a potential strategy to revolutionize therapeutics in the field of biomedicine, aiming at treating a wide range of diseases including cancer, inflammatory diseases and other oxidative stress-related disorders with high specificity. However, the current challenges and limitations are addressed to either synthetically or biologically through multipotency of engineering, such as protein modification, insufficient delivery of large-size proteins, deficiency or mutation of proteins, and high cytotoxicity. METHODS: We prepared the nanocomposites by mixing protein with PEI1200 at a certain molar ratio and demonstrated that it can deliver proteins into living cells in high efficiency and safety through the following experiments, such as dynamic light scattering, fluorescent detection, agarose gel electrophoresis, ß-Galactosidase activity detection, immunofluorescence staining, digital fluorescent detection, cell viability assay and flow cytometry. RESULTS: The self-assembly of PEI1200/protein nanocomposites with appropriate molar ratio (4:1 and 8:1) could provide efficiently delivery of active proteins to a variety of cell types in the presence of serum. The nanocomposites could continuously release protein up to 96 h in their desired intracellular locations. In addition, these nanocomposites were able to preserve protein activity while maintain low cytotoxicity (when final concentration <1 µg/mL). CONCLUSION: Collectively, PEI1200-based delivery system provided an alternative strategy to direct protein delivery in high efficiency and safety, offering increased potential applications in clinical biomedicine.


Assuntos
Espaço Intracelular/metabolismo , Polietilenoimina/química , Proteínas/administração & dosagem , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Peso Molecular , Nanocompostos/química , Nanocompostos/ultraestrutura
16.
Int Heart J ; 62(1): 127-134, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33455984

RESUMO

Mutations in the sarcomeric protein filamin C (FLNC) gene have been linked to hypertrophic cardiomyopathy (HCM), as they have been determined to increase the risk of ventricular arrhythmia and sudden death. Thus, in this study, we identified a novel missense mutation of FLNC in a Chinese family with HCM, and, interestingly, a second novel truncating mutation of MYLK2 was discobered in one family member with different phenotype.We performed whole-exome sequencing in a Chinese family with HCM of unknown cause. To determine and confirm the function of a novel mutation of FLNC, we introduced the mutant and wild-type gene into AC16 cells (human cardiomyocytes): we then used western blotting to analyze the expression of FLNC in subcellular fractions, and confocal microscope to observe the subcellular distribution of the protein.As per our findings, we were able to identify a novel missense single nucleotide variant (FLNC c.G5935A [p.A1979T]) in the family, which segregates with the disease. FLNC expression levels were observed to be equivalent in both wild-type and p.A1979T cardiomyocytes. However, the expression of the mutant protein has resulted in cytoplasmic protein aggregations, in contrast to wild-type FLNC, which was distributed in the cytoplasm and did not form aggregates. Unexpectedly, a second truncating mutation, NM_033118:exon8:c.G1138T:p.E380X of the MYLK2 gene, was identified in the mother of the proband with dilated cardiomyopathy, which was not found in other subjects.We then identified the FLNC A1979T mutation as a novel pathogenic variant associated with HCM in a Chinese family as well as a second causal mutation in a family member with a distinct phenotype. The possibility that there is more than one causal mutation in cardiomyopathy warrants clinical attention, especially for patients with atypical clinical features.


Assuntos
Povo Asiático/genética , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Filaminas/genética , Quinase de Cadeia Leve de Miosina/genética , Adulto , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Morte Súbita Cardíaca/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/ultraestrutura , Linhagem , Fenótipo , Fatores de Risco , Fibrilação Ventricular/epidemiologia , Fibrilação Ventricular/mortalidade , Sequenciamento do Exoma/métodos
17.
Front Cardiovasc Med ; 8: 764064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35284500

RESUMO

Acute myocardial infarction (MI) is one of the leading causes of death in the world, and its pathophysiological mechanisms have not been fully elucidated. The purpose of this study was to investigate the role and mechanism of uncoupling protein 2 (UCP2) after MI in mouse heart. Here, we examined the expression and role of UCP2 in mouse heart 4 weeks after MI. The expression of UCP2 was detected by RT-PCR and western blotting. Cardiac function, myocardial fibrosis, and cardiomyocyte apoptosis were assessed by echocardiography and immunohistochemistry. Phosphatase dynamin-related protein1 (P-DRP1) and myocardial fibrosis-related proteins were measured. Cardiomyocytes were exposed to hypoxia for 6 h to mimic the model of MI. Mdivi, an inhibitor of P-DRP1, was used to inhibit DRP1-dependent mitochondrial fission. Mitochondrial superoxide, membrane potential, oxygen consumption rate, and cardiomyocyte apoptosis were detected after hypoxia. It is shown mitochondrial superoxide, membrane potential, oxygen consumption rate, and cardiomyocyte apoptosis were dependent on the level of P-DRP1. UCP2 overexpression reduced cardiomyocyte apoptosis (fibrosis), improved cardiac function and inhibit the phosphorylation of DRP1 and the ratio of P-DRP1/DRP1. However, inhibition of DRP1 by mdivi did not further reduce cell apoptosis rate and cardiac function in UCP2 overexpression group. In addition, bioinformatics analysis, luciferase activity, and western blot assay proved UCP2 was a direct target gene of microRNA-762, a up-regulated microRNA after MI. In conclusion, UCP2 plays a protective role after MI and the mechanism is involved in microRNA-762 upstream and DRP1-dependent mitochondrial fission downstream.

18.
Fetal Pediatr Pathol ; 40(3): 256-261, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31805817

RESUMO

BACKGROUND: Chromosome reciprocal translocations are frequently occurring structural rearrangements observed in humans. Although individuals with balanced reciprocal translocations tend to be clinically normal, they have an increased risk of reproductive failure, miscarriage and abnormal phenotype.Casereport: A 14 days old neonate was found to have a 46,X,der(Y)t(Y;18)(q12;q11)pat karyotype causing multiple dysmorphisms and death within one month. The proband inherited from his father(carrier) an abnormal Y chromosome with Yq deletion of regions (q12-qter) and an 18q duplication of regions (q11-qter), resulting in a severe clinical phenotype similar to Edwards syndrome (Trisomy 18 syndrome). CONCLUSION: These findings expand our current knowledge of the mutation spectrum of Y-autosomal translocations associated with dysmorphosis.


Assuntos
Anormalidades Múltiplas , Translocação Genética , Anormalidades Múltiplas/genética , Bandeamento Cromossômico , Cromossomos , Feminino , Humanos , Recém-Nascido , Cariotipagem , Fenótipo , Gravidez , Trissomia
19.
Biochem Biophys Res Commun ; 534: 933-940, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168191

RESUMO

Myocardial ischemia-reperfusion (MIR) represents critical challenge for the treatment of acute myocardial infarction diseases. Presently, identifying the molecular basis revealing MIR progression is scientifically essential and may provide effective therapeutic strategies. Phosphoglycerate mutase 1 (PGAM1) is a key aerobic glycolysis enzyme, and exhibits critical role in mediating several biological events, such as energy production and inflammation. However, whether PGAM1 can affect MIR is unknown. Here we showed that PGAM1 levels were increased in murine ischemic hearts. Mice with cardiac knockout of PGAM1 were resistant to MIR-induced heart injury, evidenced by the markedly reduced infarct volume, improved cardiac function and histological alterations in cardiac sections. In addition, inflammatory response, apoptosis and fibrosis in hearts of mice with MIR operation were significantly alleviated by the cardiac deletion of PGAM1. Mechanistically, the activation of nuclear transcription factor κB (NF-κB), p38, c-Jun NH2-terminal kinase (JNK) and transforming growth factor ß (TGF-ß) signaling pathways were effectively abrogated in MI-operated mice with specific knockout of PGAM1 in hearts. The potential of PGAM1 suppression to inhibit inflammatory response, apoptosis and fibrosis were verified in the isolated cardiomyocytes and fibroblasts treated with oxygen-glucose deprivation reperfusion (OGDR) and TGF-ß, respectively. Importantly, PGAM1 directly interacted with TGF-ß to subsequently mediate inflammation, apoptosis and collagen accumulation, thereby achieving its anti-MIR action. Collectively, these findings demonstrated that PGAM1 was a positive regulator of myocardial infarction remodeling due to its promotional modulation of TGF-ß signaling, indicating that PGAM1 may be a promising therapeutic target for MIR treatment.


Assuntos
Deleção de Genes , Inflamação/genética , Infarto do Miocárdio/genética , Miocárdio/patologia , Fosfoglicerato Mutase/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Células Cultivadas , Fibrose , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fosfoglicerato Mutase/metabolismo , Ratos Sprague-Dawley
20.
J Ethnopharmacol ; 268: 113639, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33301914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), the main active ingredients of Panax notoginseng (Burkill) F.H.Chen, have been clinically used for cardiovascular diseases treatment in China as the Traditional Chinese Medicine (TCM) (Duan et al., 2017). Evidence demonstrated that PNS protected cardiomyocytes from myocardial ischemia, but the more underlying molecular mechanisms of the protective effect are still unclear. The aims of this study are to systematically know the function of PNS and discover new roles of PNS in ischemic cardiomyocytes. MATERIALS AND METHODS: To confirm PNS function on ischemic cardiomyopathy, we established in vitro myocardial ischemia model on H9C2 cardiomyocyte line, which was induced by oxygen-glucose depletion (OGD). Then RNA-seq was carried out to systematically analyze global gene expression. This study was aimed to systematically investigate the protective effect and more potential molecular mechanisms of PNS on H9C2 cardiomyocytes in vitro through whole-transcriptome analysis with total RNA sequencing (RNA-Seq). RESULTS: PNS exhibited anti-apoptotic effect in H9C2 cardiomyocytes in OGD-induced myocardial ischemia model. Through RNA-seq, we found that OGD affected expression profiling of many genes, including upregulated and downregulated genes. PNS inhibited cardiomyocyte apoptosis and death through rescuing cell cycle arrest, the DNA double-strand breakage repair process and chromosome segregation. Interestingly, for the canonical signaling pathways regulation, RNA-seq showed PNS could inhibit cardiac hypertrophy, MAPK signaling pathway, and re-activate PI3K/AKT and AMPK signaling pathways. Experimental data also confirmed the PNS could protect cardiomyocytes from OGD-induced apoptosis through activating PI3K/AKT and AMPK signaling pathways. Moreover, RNA-seq demonstrated that the expression levels of many non-coding RNAs, such as miRNAs and lncRNAs, were significantly affected after PNS treatment, suggesting that PNS could protect cardiomyocytes through regulating non-coding RNAs. CONCLUSION: RNA-seq systematically revealed different novel roles of Panax Notoginseng Saponins (PNS) in protecting cardiomyocytes from apoptosis, induced by myocardial ischemia, through rescuing cell cycle arrest and cardiac hypertrophy, re-activating the DNA double-strand breakage repair process, chromosome segregation, PI3K/Akt and AMPK signaling pathways and regulating non-coding RNAs.


Assuntos
Isquemia Miocárdica/genética , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , RNA-Seq/métodos , Saponinas/farmacologia , Animais , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/fisiologia , Extratos Vegetais/uso terapêutico , Ratos , Saponinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...