Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887987

RESUMO

Improved upstream titres in therapeutic monoclonal antibody (mAb) production have shifted capacity constraints to the downstream process. The consideration of membrane-based chromatographic devices as a debottlenecking option is gaining increasing attention with the recent introduction of high-capacity bind and elute membranes. We have evaluated the performance and scalability of the Sartobind® Rapid A affinity membrane (1 mL) for high-productivity mAb capture. For scalability assessment, a 75 mL prototype device was used to process 100 L of clarified cell culture harvest (CH) on a novel multi-use rapid cycling chromatography system (MU-RCC). MabSelect™ PrismA (4.7 mL) was used as a benchmark comparator for Protein A (ProtA) resin studies. Results show that in addition to a productivity gain of >10×, process and product quality attributes were either improved or comparable to the benchmark. Concentrations of eluate pools were 7.5× less than that of the benchmark, with the comparatively higher bulk volume likely to cause handling challenges at process scale. The MU-RCC system is capable of membrane operation at pilot scale with comparable product quality profile to the 1 mL device. The Sartobind® Rapid A membrane is a scalable alternative to conventional ProtA resin chromatography for the isolation and purification of mAbs from harvested cell culture media.

2.
ACS Appl Mater Interfaces ; 15(36): 43094-43101, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650485

RESUMO

Harvesting osmotic energy through nanofluidic devices with diverse materials has received considerable attention in recent years. Often, a small testing area on a membrane was chosen to assess its power performance by calculating power density as output power per effective area. Since the choice of this testing area is arbitrary, and it is usually quite small, the result obtained can be too optimistic. There is a need to come up with a common standard so that the performance of a device/membrane can be assessed reasonably. In this study, we systematically investigate the power density as a function of testing area in nanoporous anodic-aluminum-oxide membranes. Through changing the aperture size of substrates, we clearly show that the obtained power density decreases drastically with increasing testing area. For instance, the power density acquired from the testing area of µm2-scale can be five orders of magnitude larger than that from the pristine membrane of cm2-scale. We also advance simulations by building a 3D model to simulate osmotic-driven ion transport in the multichannel system. The result of modeling agrees with our experimental observation that the power density decreases with increasing number of channels, and the ionic concentration profile reveals that the concentration polarization becomes serious as the number of channels increases. Our result highlights the importance of effective area on testing the power performance in nanofluidic devices.

3.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112066

RESUMO

A hole array was fabricated via photolithography to wet the bottoms of holes using oxygen plasma. Amide-terminated silane, a water immiscible compound before hydrolysis, was evaporated for deposition on the plasma-treated hole template surface. The silane compound was hydrolyzed along the edges of circular sides of the hole bottom to form a ring of an initiator after halogenation. Poly(methacrylic acid) (PMAA) was grafted from the ring of the initiator to attract Ag clusters (AgCs) as AgC-PMAA hybrid ring (SPHR) arrays via alternate phase transition cycles. The SPHR arrays were modified with a Yersinia pestis antibody (abY) to detect the antigen of Yersinia pestis (agY) for plague diagnosis. The binding of the agY onto the abY-anchored SPHR array resulted in a geometrical change from a ring to a two-humped structure. The reflectance spectra could be used to analyze the AgC attachment and the agY binding onto the abY-anchored SPHR array. The linear range between the wavelength shift and agY concentration from 30 to 270 pg mL-1 was established to obtain the detection limit of ~12.3 pg mL-1. Our proposed method provides a novel pathway to efficiently fabricate a ring array with a scale of less than 100 nm, which demonstrates excellent performance in preclinical trials.

4.
Materials (Basel) ; 15(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295265

RESUMO

In this work, the microstructure and mechanical properties of atmospheric plasma-sprayed coatings of Al0.5CoCrFeNi2Ti0.5, prepared using gas-atomized powders at varying spray powers, are studied in as-sprayed and heat-treated conditions. Gas-atomized powders had spherical shapes and uniform element distributions, with major FCC phases and metastable BCC phases. The metastable BCC phase transformed to ordered and disordered BCC phases when sufficient energy was applied during the plasma-spraying process. During the heat treatment process for 2 hrs, disordered BCCs transformed into ordered BCCs, while the intensity of the FCC peaks increased. Spraying power plays a significant role in the microstructure and mechanical properties of plasma sprayed because at a high power, coatings exhibit better mechanical properties due to their dense microstructures resulting in less defects. As the plasma current was increased from 500 A to 700 A, the coatings' hardness increased by approximately 21%, which is directly proportional to the decreased wear rate of the coatings at high spraying powers. As the coatings experienced heat treatments, the coatings sprayed with a higher spraying power showed higher hardness and wear resistances. Precipitation strengthening played a significant role in the hardness and wear resistances of the coatings due to the addition of the titanium element.

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745371

RESUMO

Herein, we demonstrate a facile technique for the fabrication of one-dimensional indium antimonide (InSb) nanowires using anodic aluminium oxide (AAO) template-assisted vacuum die-casting method. The filling mechanism of the vacuum die-casting process is investigated on varying AAO pore structures through different electrolytes. It is found that the anodizing electrolytes play a vital role in nanowire growth and structure formation. The as-obtained InSb nanowires from the dissolution process show a degree of high crystallinity, homogeneity, and uniformity throughout their structure. The TEM and XRD results elucidated the InSb zinc-blende crystal structure and preferential orientation along the c-axis direction. The thermoelectric characteristics of InSb nanowires were measured with a four-electrode system, and their resistivity, Seebeck coefficient, power factor, thermal conductivity, and ZT have been evaluated. Further, surface-modified nanowires using the reactive-ion etching technique showed a 50% increase in thermoelectric performance.

6.
Cell Discov ; 8(1): 3, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039483

RESUMO

Caspase-mediated cleavage of PARP1 is a surrogate marker for apoptosis. However, the biological significance of PARP1 cleavage during apoptosis is still unclear. Here, using unbiased protein affinity purification, we show that truncated PARP1 (tPARP1) recognizes the RNA polymerase III (Pol III) complex in the cytosol. tPARP1 mono-ADP-ribosylates RNA Pol III in vitro and mediates ADP-ribosylation of RNA Pol III during poly(dA-dT)-stimulated apoptosis in cells. tPARP1-mediated activation of RNA Pol III facilitates IFN-ß production and apoptosis. In contrast, suppression of PARP1 or expressing the non-cleavable form of PARP1 impairs these molecular events. Taken together, these studies reveal a novel biological role of tPARP1 during cytosolic DNA-induced apoptosis.

7.
Chemosphere ; 292: 133400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974048

RESUMO

Herein, the facile synthesis of copper(II) and benzene-1,3,5-tricarboxylate (Cu-BTC) and copper nanoporous carbon (Cu@NPC) for the electrochemical detection of diphenylamine (DPA) was systematically investigated. The Cu-BTC and Cu@NPC materials structural, morphological, and thermal stability were evaluated and confirmed using FE-SEM, HR-TEM, XRD, FT-IR, and TGA. The electrocatalytic behavior of sensor materials was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It is presumed that the structural stability and synergic effect exhibited in Cu@NPC are favorable for enhanced sensitivity and selectivity towards the detection of DPA. The Cu@NPC exhibited a wide linear range (0.09-396.82 µM) and the lowest limit of detection (5 nM). Furthermore, the real sample analysis of the sensor for the detection of DPA in apples and pears confirms its potential capability in practical application.


Assuntos
Carbono , Nanoporos , Antioxidantes , Cobre , Difenilamina , Técnicas Eletroquímicas , Eletrodos , Frutas , Limite de Detecção , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Immunother Cancer ; 9(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903555

RESUMO

BACKGROUND: Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. METHODS: We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. RESULTS: We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. CONCLUSIONS: Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Células-Tronco Neoplásicas/imunologia , Receptores CXCR3/metabolismo , Animais , Movimento Celular , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Receptores CXCR3/genética , Análise de Célula Única
9.
J Immunother Cancer ; 9(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599020

RESUMO

BACKGROUND: T cell checkpoint immunotherapies have shown promising results in the clinic, but most patients remain non-responsive. CD47-signal regulatory protein alpha (SIRPα) myeloid checkpoint blockade has shown early clinical activity in hematologic malignancies. However, CD47 expression on peripheral blood limits αCD47 antibody selectivity and thus efficacy in solid tumors. METHODS: To improve the antibody selectivity and therapeutic window, we developed a novel affinity-tuned bispecific antibody targeting CD47 and programmed death-ligand 1 (PD-L1) to antagonize both innate and adaptive immune checkpoint pathways. This PD-L1-targeted CD47 bispecific antibody was designed with potent affinity for PD-L1 and moderate affinity for CD47 to achieve preferential binding on tumor and myeloid cells expressing PD-L1 in the tumor microenvironment (TME). RESULTS: The antibody design reduced binding on red blood cells and enhanced selectivity to the TME, improving the therapeutic window compared with αCD47 and its combination with αPD-L1 in syngeneic tumor models. Mechanistically, both myeloid and T cells were activated and contributed to antitumor activity of αCD47/PD-L1 bispecific antibody. Distinct from αCD47 and αPD-L1 monotherapies or combination therapies, single-cell RNA sequencing (scRNA-seq) and gene expression analysis revealed that the bispecific treatment resulted in unique innate activation, including pattern recognition receptor-mediated induction of type I interferon pathways and antigen presentation in dendritic cells and macrophage populations. Furthermore, treatment increased the Tcf7+ stem-like progenitor CD8 T cell population in the TME and promoted its differentiation to an effector-like state. Consistent with mouse data, the compounds were well tolerated and demonstrated robust myeloid and T cell activation in non-human primates (NHPs). Notably, RNA-seq analysis in NHPs provided evidence that the innate activation was mainly contributed by CD47-SIRPα but not PD-L1-PD-1 blockade from the bispecific antibody. CONCLUSION: These findings provide novel mechanistic insights into how myeloid and T cells can be uniquely modulated by the dual innate and adaptive checkpoint antibody and demonstrate its potential in clinical development (NCT04881045) to improve patient outcomes over current PD-(L)1 and CD47-targeted therapies.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígeno CD47/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata , Imunoterapia/métodos , Macaca fascicularis , Camundongos , Microambiente Tumoral
10.
Nanotechnology ; 33(7)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34530420

RESUMO

Lead (Pb) nanowire arrays were fabricated with anodic aluminum oxide (AAO) templates of 30, 100 and 300 nm in pore diameters. Through vacuum injection molding process, Pb/AAO composite was obtained, and lead sulfide (PbS) could further be synthesized after exposing to sulfur gas. AAO templates with different pore sizes were fabricated by using pure aluminum in a two-step anodization. Three types of solutions, which are 10 vol% sulfuric acid, 3 wt% oxalic acid and 1 vol% phosphoric acid, were adopted to achieve AAO of various pore sizes. Different sulfurization temperatures and time spans were applied for studying on the formation mechanism of PbS. Finally, the morphology, composition, structure and elements distribution of the as-prepared Pb and PbS nanowires were confirmed through the use of scanning electron microscopy, energy dispersive x-ray spectroscopy, element-mapping, x-ray diffraction and transmission electron microscopy analysis. The results indicated that Pb nanowires were successfully obtained after applying vacuum injection molding process with 50 kgf cm-2hydraulic pressure, and PbS nano arrays can be formed by sulfurization at 500 °C for 5 h. Furthermore, an optical property, ultraviolet-visible (UV-Vis) absorption, was also measured. The measurement of the PbS nanowires showed that a significant quantum confinement effect made the energy gap produce a blue shift from 0.41 eV to 1.65 eV or 1.72 eV.

11.
Cancer Immunol Res ; 9(10): 1141-1157, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376502

RESUMO

The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1+ tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1-IL15m, demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1-IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1-IL15m preferentially targeted CD8+ TILs and single-cell RNA-sequencing analyses revealed that anti-mPD1-IL15m treatment induced the expansion of an exhausted CD8+ TIL cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1-IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1-IL15m on primary human TILs from patients with cancer was also evaluated. Anti-hPD1-IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, our findings showed that anti-PD1-IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD1+ TILs.See related Spotlight by Felices and Miller, p. 1110.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/terapia , Imunoterapia , Interleucina-15/uso terapêutico , Melanoma Experimental/terapia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico
12.
Nat Cell Biol ; 23(8): 894-904, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354233

RESUMO

The shieldin complex functions as the downstream effector of 53BP1-RIF1 to promote DNA double-strand break end-joining by restricting end resection. The SHLD2 subunit binds to single-stranded DNA ends and blocks end resection through OB-fold domains. Besides blocking end resection, it is unclear how the shieldin complex processes SHLD2-bound single-stranded DNA and promotes non-homologous end-joining. Here, we identify a downstream effector of the shieldin complex, ASTE1, as a structure-specific DNA endonuclease that specifically cleaves single-stranded DNA and 3' overhang DNA. ASTE1 localizes to DNA damage sites in a shieldin-dependent manner. Loss of ASTE1 impairs non-homologous end-joining, leads to hyper-resection and causes defective immunoglobulin class switch recombination. ASTE1 deficiency also causes resistance to poly(ADP-ribose) polymerase inhibitors in BRCA1-deficient cells owing to restoration of homologous recombination. These findings suggest that ASTE1-mediated 3' single-stranded DNA end cleavage contributes to the control of DSB repair choice by 53BP1, RIF1 and shieldin.


Assuntos
Reparo do DNA por Junção de Extremidades , Desoxirribonuclease I/fisiologia , Proteínas/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Feminino , Instabilidade Genômica , Células HEK293 , Humanos , Switching de Imunoglobulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão
13.
ACS Appl Mater Interfaces ; 13(16): 18991-18998, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851818

RESUMO

Single crystal wafers, such as silicon, are the fundamental carriers of advanced electronic devices. However, these wafers exhibit rigidity without mechanical flexibility, limiting their applications in flexible electronics. Here, we propose a new approach to fabricate 1.5 in. flexible functional zinc oxide (ZnO) single crystal wafers with high electron mobility (>100 cm2 V-1 s-1) and optical transparency (>80%) by a combination of thin-film deposition, a chemical solution method, and surficial treatment. The uniformity of the flexible single crystal wafers is examined by an advanced scanning X-ray diffraction technique and photoluminescence spectroscopy. The transport properties of ZnO flexible single crystal wafers retain their pristine states under various bending conditions, including cyclability and endurability. This approach demonstrates a breakthrough in the fabrication of the flexible single crystal wafers for future flexible optoelectronic applications.

14.
J Neural Eng ; 18(4)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33831852

RESUMO

Objective.Developments in electroencephalography (EEG) technology have allowed the use of the brain-computer interface (BCI) outside dedicated labratories. In order to achieve long-term monitoring and detection of EEG signals for BCI application, dry electrodes with good signal quality and high bio compatibility are essential. In 2016, we proposed a flexible dry electrode made of silicone gel and Ag flakes, which showed good signal quality and mechanical robustness. However, the Ag components used in our previous design made the electrode too expensive for commercial adaptation.Approach.In this study, we developed an affordable dry electrode made of silicone gel, metal flakes and graphene/GO based on our previous design. Two types of electrodes with different graphene/GO proportions were produced to explore how the amount of graphene/GO affects the electrode.Main results.During our tests, the electrodes showed low impedance and had good signal correlation to conventional wet electrodes in both the time and frequency domains. The graphene/GO electrode also showed good signal quality in eyes-open EEG recording. We also found that the electrode with more graphene/GO had an uneven surface and worse signal quality. This suggests that adding too much graphene/GO may reduce the electrods' performance. Furthermore, we tested the proposed dry electrodes' capability in detecting steady state visually evoked potential. We found that the dry electrodes can reliably detect evoked potential changes even in the hairy occipital area.Significance.Our results showed that the proposed electrode has good signal quality and is ready for BCI applications.


Assuntos
Grafite , Eletrodos , Eletroencefalografia
15.
J Biol Chem ; 295(40): 13838-13849, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32753484

RESUMO

The ADP-ribosylhydrolase ARH3 plays a key role in DNA damage repair, digesting poly(ADP-ribose) and removing ADP-ribose from serine residues of the substrates. Specific inhibitors that selectively target ARH3 would be a useful tool to examine DNA damage repair, as well as a possible strategy for tumor suppression. However, efforts to date have not identified any suitable compounds. Here, we used in silico and biochemistry screening to search for ARH3 inhibitors. We discovered a small molecule compound named ARH3 inhibitor 26 (AI26) as, to our knowledge, the first ARH3 inhibitor. AI26 binds to the catalytic pocket of ARH3 and inhibits the enzymatic activity of ARH3 with an estimated IC50 of ∼2.41 µm in vitro Moreover, hydrolysis of DNA damage-induced ADP-ribosylation was clearly inhibited when cells were pretreated with AI26, leading to defects in DNA damage repair. In addition, tumor cells with DNA damage repair defects were hypersensitive to AI26 treatment, as well as combinations of AI26 and other DNA-damaging agents such as camptothecin and doxorubicin. Collectively, these results reveal not only a chemical probe to study ARH3-mediated DNA damage repair but also a chemotherapeutic strategy for tumor suppression.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Glicosídeo Hidrolases/genética , Humanos
16.
Ultrason Sonochem ; 68: 105176, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480290

RESUMO

In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm-2 and was found to have excellent selectivity and durability for the detection of MNZ.


Assuntos
Grafite/química , Compostos de Manganês/química , Compostos de Manganês/síntese química , Metronidazol/química , Nanotecnologia , Níquel/química , Óxidos/química , Óxidos/síntese química , Ondas Ultrassônicas , Técnicas de Química Sintética , Eletroquímica , Oxirredução
17.
Nucleic Acids Res ; 48(6): 3001-3013, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965183

RESUMO

Nucleosomal histones are barriers to the DNA repair process particularly at DNA double-strand breaks (DSBs). However, the molecular mechanism by which these histone barriers are removed from the sites of DNA damage remains elusive. Here, we have generated a single specific inducible DSB in the cells and systematically examined the histone removal process at the DNA lesion. We found that histone removal occurred immediately following DNA damage and could extend up to a range of few kilobases from the lesion. To examine the molecular mechanism underlying DNA damage-induced histone removal, we screened histone modifications and found that histone ADP-ribosylation was associated with histone removal at DNA lesions. PARP inhibitor treatment suppressed the immediate histone eviction at DNA lesions. Moreover, we examined histone chaperones and found that the FACT complex recognized ADP-ribosylated histones and mediated the removal of histones in response to DNA damage. Taken together, our results reveal a pathway that regulates early histone barrier removal at DNA lesions. It may also explain the mechanism by which PARP inhibitor regulates early DNA damage repair.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Histonas/genética , Poli ADP Ribosilação/genética , ADP-Ribosilação/genética , Núcleo Celular/genética , Cromatina/genética , Cromossomos Humanos X/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Células HCT116 , Humanos , Chaperonas Moleculares/genética , Nucleossomos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
18.
Mutat Res Rev Mutat Res ; 780: 82-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395352

RESUMO

Poly(ADP-ribosyl)ation (aka PARylation) is a unique protein post-translational modification (PTM) first described over 50 years ago. PARylation regulates a number of biological processes including chromatin remodeling, the DNA damage response (DDR), transcription, apoptosis, and mitosis. The subsequent discovery of poly(ADP-ribose) polymerase-1 (PARP-1) catalyzing DNA-dependent PARylation spearheaded the field of DDR. The expanding knowledge about the poly ADP-ribose (PAR) recognition domains prompted the discovery of novel DDR factors and revealed crosstalk with other protein PTMs including phosphorylation, ubiquitination, methylation and acetylation. In this review, we highlight the current knowledge on PAR-regulated DDR, PAR recognition domain, and PARP inhibition in cancer therapy.


Assuntos
Dano ao DNA/genética , Neoplasias/genética , Poli ADP Ribosilação/genética , Poli Adenosina Difosfato Ribose/genética , Animais , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Humanos , Neoplasias/tratamento farmacológico , Poli ADP Ribosilação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética
19.
Sci Adv ; 5(4): eaav4340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30989114

RESUMO

While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor-resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.


Assuntos
Reparo do DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação , Domínio Catalítico , Dano ao DNA , Glicosídeo Hidrolases/química , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/química , Ligação Proteica
20.
Nat Commun ; 10(1): 693, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741937

RESUMO

ADP-ribosylation is a unique posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) using NAD+ as ADP-ribose donor. PARPs play an indispensable role in DNA damage repair and small molecule PARP inhibitors have emerged as potent anticancer drugs. However, to date, PARP inhibitor treatment has been restricted to patients with BRCA1/2 mutation-associated breast and ovarian cancer. One of the major challenges to extend the therapeutic potential of PARP inhibitors to other cancer types is the absence of predictive biomarkers. Here, we show that ovarian cancer cells with higher level of NADP+, an NAD+ derivative, are more sensitive to PARP inhibitors. We demonstrate that NADP+ acts as a negative regulator and suppresses ADP-ribosylation both in vitro and in vivo. NADP+ impairs ADP-ribosylation-dependent DNA damage repair and sensitizes tumor cell to chemically synthesized PARP inhibitors. Taken together, our study identifies NADP+ as an endogenous PARP inhibitor that may have implications in cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , NADP/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , ADP-Ribosilação , Animais , Biomarcadores , Linhagem Celular Tumoral/efeitos dos fármacos , Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Humanos , Camundongos , NAD/farmacologia , Neoplasias Ovarianas , Fosfotransferases (Aceptor do Grupo Álcool)/efeitos dos fármacos , Poli ADP Ribosilação/efeitos dos fármacos , RNA Helicases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...