Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1338596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455729

RESUMO

The various vegetation types in the karst landscape have been considered the results of heterogeneous habitats. However, the lack of a comprehensive understanding of regional biodiversity patterns and the underlying ecological processes limits further research on ecological management. This study established forest dynamic plots (FDPs) of the dominant vegetation types (shrubland, SL; mixed tree and shrub forest, MTSF; coniferous forest, CF; coniferous broadleaf mixed forest, CBMF; and broadleaf forest, BF) in the karst landscape and quantified the species diversity patterns and potential ecological processes. The results showed that in terms of diversity patterns, the evenness and species richness of the CF community were significantly lower than other vegetation types, while the BF community had the highest species richness. The other three vegetation types showed no significant variation in species richness and evenness. However, when controlling the number of individuals of FDPs, the rarefied species richness showed significant differences and ranked as BF > SL > MTSF > CBMF > CF, highlighting the importance of considering the impacts of abundance. Additionally, the community assembly of climax communities (CF or BF) was dominated by stochastic processes such as species dispersal or species formation, whereas deterministic processes (habitat filtering) dominated the secondary forests (SL, MTSF, and CBMF). These findings proved that community assembly differs mainly between the climax community and other communities. Hence, it is crucial to consider the biodiversity and of the potential underlying ecological processes together when studying regional ecology and management, particularly in heterogeneous ecosystems.

2.
J Environ Manage ; 354: 120265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382441

RESUMO

Giant habitat heterogeneity is an important factor contributing to the high species richness (SR) in karst forests. Yet, the driving factor behind the alterations in SR patterns during natural restoration remains unclear. In this study, we established the forest dynamics plots along the natural restoration sequence (including shrub-tree mixed forest stage (SC), secondary forest stage (SG) and old-growth forest sage (OG)) in degraded karst forests to compare the SR and the dependence on its components (including total community abundance, species abundance distribution (SAD), and conspecific spatial aggregation (CSA)) among stages of natural restoration. By evaluating the degree of contribution of the components to local SR and rarefied SR, we found that the SG exhibited the highest local SR, while the rarefied SR remained increasing along the restoration sequence after controlling the sample size. At SC-SG stage, SAD and CSA contributed negatively to the differences in SR, while abundance made a positive contribution to SR differences. At SG-OG, abundance contributed positively to the difference in SR at all scales, while SAD contributed negatively at small scales. No significant contribution of CSA was found at observed scales. In addition, local SR varied more significantly with PIE than with abundance. Our research emphasizes the importance of eliminating the influence of abundance on species richness in forest ecology and management, as well as the significance of separately evaluating the components that shape the diversity patterns.


Assuntos
Ecossistema , Florestas , Árvores , Ecologia , Biodiversidade
3.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684687

RESUMO

All-dielectric nanoparticles, as the counterpart of metallic nanostructures have recently attracted significant interest in manipulating light-matter interaction at a nanoscale. Directional scattering, as an important property of nanoparticles, has been investigated in traditional high refractive index materials, such as silicon, germanium and gallium arsenide in a narrow band range. Here in this paper, we demonstrate that a broadband forward scattering across the entire visible range can be achieved by the low loss TiO2 nanoparticles with moderate refractive index. This mainly stems from the optical interferences between the broadband electric dipole and the magnetic dipole modes. The forward/backward scattering ratio reaches maximum value at the wavelengths satisfying the first Kerker's condition. Experimentally, the femtosecond pulsed laser was employed to splash different-sized nanoparticles from a thin TiO2 film deposited on the glass substrate. Single particle scattering measurement in both the forward and backward direction was performed by a homemade confocal microscopic system, demonstrating the broadband forward scattering feature. Our research holds great promise for many applications such as light harvesting, photodetection and on-chip photonic devices and so on.

4.
Opt Express ; 27(21): 30909-30918, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684332

RESUMO

Aluminum (Al) plasmonic nanostructures have recently demonstrated remarkable optical nonlinear phenomena, such as enhanced second harmonic (SH) generation. However, the relatively weak field enhancement resulted from large optical losses associated with aluminum nanostructures in combination with the difficulties in controlling the emission polarization pose as a challenge for SH enhancement and tuning. In this paper, we show that the SH emission of aluminum nanostructures can be efficiently enhanced with the polarization properties simultaneously tunable by using metal-insulator-metal (MIM) nanostructures, constituting of Al cross nanoantenna arrays on top of Al mirrors with a SiO2 spacing layer. Specifically, femtosecond laser beam with a linear polarization parallel to one arm illuminates on the structure while the orthogonal arms were physically modified by the laser-induced photothermal reshaping technique to control the SH radiation by the plasmonic resonances. Under the resonance at the SH wavelength, we observed one order of magnitude larger emission enhancement compared to that at the off-resonant condition. Interestingly, the polarization states can be well manipulated simultaneously by controlling the resonances of the orthogonal arms. The enhanced SH conversion and tunable polarization states pave the way for the development of nonlinear optical sources and advanced functional metasurfaces.

5.
ACS Appl Mater Interfaces ; 10(19): 16776-16782, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29682955

RESUMO

Emerging high-index all-dielectric nanostructures, capable of manipulating light on the subwavelength scale, empower designing and implementing novel antireflection and light-trapping layers in many photonic and optoelectronic devices. However, their performance and practicality are compromised by relatively narrow bandwidths and highly sophisticated fabrications. In this paper, we demonstrate an ultra-broadband (300-1200 nm) directional light scattering strategy using high-index surface silicon oligomer resonators fabricated by a facile, scalable, and low-cost colloidal lithography technique. The exceptional broadband forward scattering stems from a combined effect of strongly intercoupled Mie resonances within the oligomers composed of randomly positioned nanodisks in the visible region and a strong electric mode coupling between the oligomers and the high-index substrate in the red-to-near-infrared region. By implementing this efficient approach in silicon solar cells, the integrated optical reflection loss across the wavelength range 300-1200 nm can be as low as 7%. Consequently, the short-circuit current density determined from the external quantum efficiency of solar cells can be increased to 35.1 from 25.1 mA/cm2, representing an enhancement of 40%, with a demonstrated energy conversion efficiency exceeding 15.0%. The insights in this paper hold great potentials for new classes of light management and steering photonic devices with drastically improved practicality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA