Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38194409

RESUMO

Noninvasive blood glucose (BG) measurement could significantly improve the prevention and management of diabetes. In this paper, we present a robust novel paradigm based on analyzing photoplethysmogram (PPG) signals. The method includes signal pre-processing optimization and a multi-view cross-fusion transformer (MvCFT) network for non-invasive BG assessment. Specifically, a multi-size weighted fitting (MSWF) time-domain filtering algorithm is proposed to optimally preserve the most authentic morphological features of the original signals. Meanwhile, the spatial position encoding-based kinetics features are reconstructed and embedded as prior knowledge to discern the implicit physiological patterns. In addition, a cross-view feature fusion (CVFF) module is designed to incorporate pairwise mutual information among different views to adequately capture the potential complementary features in physiological sequences. Finally, the subject- wise 5- fold cross-validation is performed on a clinical dataset of 260 subjects. The root mean square error (RMSE) and mean absolute error (MAE) of BG measurements are 1.129 mmol/L and 0.659 mmol/L, respectively, and the optimal Zone A in the Clark error grid, representing none clinical risk, is 87.89%. The results indicate that the proposed method has great potential for homecare applications.

2.
Chempluschem ; 87(11): e202200249, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357010

RESUMO

Inspired by the formation of microspheres by hexachlorocyclotriphosphazene and 4, 4'-sulfonyldiphenol, polyphosphazene-functionalized microspheres were developed. Benefits from the supported supper basic phosphazene, the yield exceeded 99 % at room temperature in the manner of second-order reaction kinetics toward Knoevenagel reaction and was still maintained at 99 % after 16 runs. In the experimental temperature from 0 °C to 90 °C, the yield increased from 92 % to 99 %, reflecting that the catalyst had strong applicability under mild conditions. This behavior was conducive to energy conservation. Meanwhile, simple separation and recovery further enhanced this advantage. In addition, the catalyst was also found to be insensitive to aqueous solution or organic solvents such as toluene, THF, EtOH and CH3 CN. This property gave the Knoevenagel reaction a vast choice. All these features exhibit that this novel catalyst is an attractive and applicable alternative in organic synthesis.


Assuntos
Compostos Organofosforados , Polímeros , Microesferas , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...