Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Integr Plant Biol ; 65(6): 1566-1584, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36738234

RESUMO

Arabidopsis MORE AXILLARY GROWTH2 (MAX2) is a key component in the strigolactone (SL) and karrikin (KAR) signaling pathways and regulates the degradation of SUPPRESSOR OF MAX2 1/SMAX1-like (SMAX1/SMXL) proteins, which are transcriptional co-repressors that regulate plant architecture, as well as abiotic and biotic stress responses. The max2 mutation reduces resistance against Pseudomonas syringae pv. tomato (Pst). To uncover the mechanism of MAX2-mediated resistance, we evaluated the resistance of various SL and KAR signaling pathway mutants. The resistance of SL-deficient mutants and of dwarf 14 (d14) was similar to that of the wild-type, whereas the resistance of the karrikin insensitive 2 (kai2) mutant was compromised, demonstrating that the KAR signaling pathway, not the SL signaling pathway, positively regulates the immune response. We measured the resistance of smax1 and smxl mutants, as well as the double, triple, and quadruple mutants with max2, which revealed that both the smax1 mutant and smxl6/7/8 triple mutant rescue the low resistance phenotype of max2 and that SMAX1 accumulation diminishes resistance. The susceptibility of smax1D, containing a degradation-insensitive form of SMAX1, further confirmed the SMAX1 function in the resistance. The relationship between the accumulation of SMAX1/SMXLs and disease resistance suggested that the inhibitory activity of SMAX1 to resistance requires SMXL6/7/8. Moreover, the exogenous application of KAR2 enhanced resistance against Pst, but KAR-induced resistance depended on salicylic acid (SA) signaling. Inhibition of karrikin signaling delayed SA-mediated defense responses and inhibited pathogen-induced protein biosynthesis. Together, we propose that the MAX2-KAI2-SMAX1 complex regulates resistance with the assistance of SMXL6/7/8 and SA signaling and that SMAX1/SMXLs possibly form a multimeric complex with their target transcription factors to fine tune immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Plant Cell Environ ; 45(7): 2126-2144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35394666

RESUMO

WRKY transcription factors (TFs) play crucial roles in biotic and abiotic stress responses. However, their roles in thermal response are still largely elusive, especially in rice. In this study, we revealed the functions of WRKY10 TF and VQ8 protein containing VQ motif in rice thermotolerance. Overexpression of WRKY10 or loss of VQ8 function increases thermosensitivity, whereas conversely, overexpression of VQ8 or loss of WRKY10 function enhances thermotolerance. Overexpression of WRKY10 accelerates reactive oxygen species (ROS) accumulation in chloroplasts and apoplasts, and it also induces the expression of heat shock TF and protein genes. We also found that WRKY10 regulates nuclear DNA fragmentation and hypersensitive response by modulating NAC4 TF expression. The balance between destructive and protective responses in WRKY10-overexpression plant is more fragile and more easily broken by heat stress compared with wild type. In vitro and in vivo assays revealed that VQ8 interacts with WRKY10 and inhibits the transcription activity via repressing its DNA-binding activity. Our study demonstrates that WRKY10 negatively regulates thermotolerance by modulating the ROS balance and the hypersensitive response and that VQ8 functions antagonistically to positively regulate thermotolerance. The functional module of WRKY10-VQ8 provides safe and effective regulatory mechanisms in the heat stress response.


Assuntos
Oryza , Termotolerância , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Termotolerância/genética
3.
Biochem Biophys Res Commun ; 553: 44-50, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756344

RESUMO

ARABIDOPSIS: SMAX1/SMXL (SUPPRESSOR OF MAX2 1/SMAX1-LIKE) proteins function as transcriptional repressors in karrikin and strigolactone (SL) signaling pathways and regulate plant architecture. MAX2 is a common factor in the two signaling pathways and a component of the SCF complex that modulates the proteasome-mediated degradation of SMAX1/SMXLs. SMXL6, 7, and 8 proteins promote shoot branching and inhibit petiole elongation. Our study found that the accumulation of SMAX1 suppresses rosette shoot branching and increases cauline branches on the primary inflorescence stem, plant height, petiole length, and leaf length/width ratio. The SMAX1 accumulation enhances the expression of BRC1, HB53, HB40, and HB21 that modulate shoot branching. SMAX1 also regulates the expression of the genes involved in auxin transport, cytokinin signaling pathway, and SL biosynthesis. The expression analyses of these genes suggest that excessive SMAX1 should accelerate the transport of auxin and the biosynthesis of SL in plants. High SL concentration suppresses the bud development in smax1D mutant that accumulates SMAX1 protein in plant. However, the effects of cytokinin and auxin on shoot branching remain elusive in the mutant with excessive SMAX1. SMAX1 regulates leaf shape and petiole length via modulating TCP1 expression. Our findings reveal a novel function of SMAX1 and new mechanism of shoot branching.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/anatomia & histologia , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Núcleo Celular , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Espaço Intracelular/metabolismo , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
Electron. j. biotechnol ; 18(5): 343-346, Sept. 2015. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-764021

RESUMO

Background Thermostable DNA polymerase (Taq Pol ?) from Thermus aquaticus has been widely used in PCR, which was usually extracted with Pluthero's method. The method used ammonium sulfate to precipitate the enzyme, and it saved effort and money but not time. Moreover, we found that 30-40% activity of Taq Pol I was lost at the ammonium sulfate precipitation step, and the product contained a small amount of DNA. Results We provided a novel, simplified and low-cost method to purify the Taq Pol ? after overproduction of the enzyme in Escherichia coli, which used ethanol instead of ammonium sulfate to precipitate the enzyme. The precipitate can be directly dissolved in the storage buffer without dialysis. In addition, DNA and RNA contamination was removed with DNase I and RNase A before precipitation, and the extraction procedure was optimized. Our improvements increase recovery rate and specific activity of the enzyme, and save labor, time, and cost. Conclusions Our method uses ethanol, DNase I, and RNase A to purify the Taq Pol ?, and simplifies the operation, and increases the enzyme recovery rate and quality.


Assuntos
Taq Polimerase/isolamento & purificação , Taq Polimerase/genética , Etanol/química , Precipitação Química , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...