Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(13): 15950-15957, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769782

RESUMO

Spin-orbit torques (SOTs) from transition metal dichalcogenide systems (TMDs) in conjunction with ferromagnetic materials are recently found to be attractive in spintronics for their versatile features. However, most of the previously studied crystalline TMDs are prepared by mechanical exfoliation, which limits their potentials for industrial applications. Here, we show that amorphous WTe2 heterostructures deposited by magnetron sputtering possess a sizable damping-like SOT efficiency of ξDLWTe2 ≈ 0.20 and low damping constant of α = 0.009 ± 0.001. Only an extremely low critical switching current density of Jc≈ 7.05 × 109 A/m2 is required to achieve SOT-driven magnetization switching. The SOT efficiency is further proved to depend on the W and Te relative compositions in the co-sputtered W100-xTex samples, from which a sign change of ξDLWTe2 is observed. In addition, the electronic transport in amorphous WTe2 is found to be semiconducting and is governed by a hopping mechanism. With the above advantages and rich tunability, amorphous and semiconducting WTe2 serves as a unique SOT source for future spintronics applications.

2.
ACS Appl Mater Interfaces ; 12(6): 7788-7794, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31977175

RESUMO

The spin-orbit torques (SOTs) generated from topological insulators (TIs) have gained increasing attention in recent years. These TIs, which are typically formed by epitaxially grown chalcogenides, possess extremely high SOT efficiencies and have great potential to be employed in next-generation spintronics devices. However, epitaxy of these chalcogenides is required to ensure the existence of the topologically protected surface state (TSS), which limits the feasibility of using these materials in industry. In this work, we show that nonepitaxial BixTe1-x/ferromagnet heterostructures prepared by conventional magnetron sputtering possess giant SOT efficiencies even without TSS. Through harmonic voltage measurement and hysteresis loop shift measurement, we find that the damping-like SOT efficiencies originated from the bulk spin-orbit interactions of such nonepitaxial heterostructures can reach values greater than 100% at room temperature. We further demonstrate current-induced SOT switching in these BixTe1-x-based heterostructures with thermally stable ferromagnetic layers, which indicates that such nonepitaxial chalcogenide materials can be potential efficient SOT sources in future SOT magnetic memory devices.

3.
Sci Rep ; 8(1): 5613, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618741

RESUMO

Magneto-optical Kerr effect (MOKE) is an efficient approach to probe surface magnetization in thin film samples. Here we present a wide-field MOKE technique that adopts a Köhler illumination scheme to characterize the current-induced damping-like spin-orbit torque (DL-SOT) in micron-sized and unpatterned magnetic heterostructures with perpendicular magnetic anisotropy. Through a current-induced hysteresis loop shift analysis, we quantify the DL-SOT efficiency of a Ta-based heterostructure with bar-shaped geometry, Hall-cross geometry, and unpatterned geometry to be |ξ DL | ≈ 0.08. The proposed wide-field MOKE approach therefore provides an instant and direct characterization of DL-SOT, without the need of any further interpretation on electrical signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...