Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Physiol ; 10: 995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447690

RESUMO

Intermittent hypoxia (IH), characterized as cyclic episodes of short-period hypoxia followed by normoxia, occurs in many physiological and pathophysiological conditions such as pregnancy, athlete, obstructive sleep apnea, and asthma. Hypoxia can induce autophagy, which is activated in response to protein aggregates, in the proteotoxic forms of cardiac diseases. Previous studies suggested that autophagy can protect cells by avoiding accumulation of misfolded proteins, which can be generated in response to ischemia/reperfusion (I/R) injury. The objective of the present study was to determine whether IH-induced autophagy can attenuate endoplasmic reticulum (ER) stress and cell death. In this study, H9c2 cell line, rat primary cultured cardiomyocytes, and C57BL/6 male mice underwent IH with an oscillating O2 concentration between 4 and 20% every 30 min for 1-4 days in an incubator. The levels of LC3, an autophagy indicator protein and CHOP and GRP78 (ER stress-related proteins) were measured by Western blotting analyses. Our data demonstrated that the autophagy-related proteins were upregulated in days 1-3, while the ER stress-related proteins were downregulated on the second day after IH. Treatment with H2O2 (100 µM) for 24 h caused ER stress and increased the level of ER stress-related proteins, and these effects were abolished by pre-treatment with IH condition. In response to the autophagy inhibitor, the level of ER stress-related proteins was upregulated again. Taken together, our data suggested that IH could increase myocardial autophagy as an adaptive response to prevent the ER stress and apoptosis.

2.
J Mol Cell Cardiol ; 118: 122-132, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577873

RESUMO

Intermittent hypoxia (IH) has been shown to exert cardioprotective effects against ischemia/reperfusion (I/R) injury through the preservation of ion homeostasis. I/R dramatically elevated cytosolic Zn2+ and caused cardiomyocyte death. However, the role of IH exposure in the relationship between Zn2+ regulation and cardioprotection is still unclear. The aim of the present study was to study whether IH exposure could help in intracellular Zn2+ regulation, hence contributing to cardioprotection against I/R injury. Adult rat cardiomyocytes were exposed to IH (5% O2, 5% CO2 and balanced N2) for 30 min followed by 30 min of normoxia (21% O2, 5% CO2 and balanced N2). Changes in intracellular Zn2+ concentration were determined using a Zn2+-specific fluorescent dye, FluoZin-3 or RhodZin-3. Fluorescence was monitored under an inverted fluorescent or confocal microscope. The results demonstrated that I/R or 2,2'-dithiodipyridine (DTDP), a reactive disulphide compound, induced Zn2+ release from metallothioneins (MTs), subsequently causing cytosolic Zn2+ overload, which in turn increased intracellular Zn2+ entry into the mitochondria via a Ca2+ uniporter, hence inducing mitochondrial membrane potential loss, and eventually led to cell death. However, the cytosolic Zn2+ overload and cell death caused by I/R or DTDP was significantly reduced by treatment of cardiomyocytes with IH. The findings from this study suggest that IH might exert its cardioprotective effect through reducing the I/R-induced cytosolic Zn2+ overload and cell death in cardiomyocytes.


Assuntos
Hipóxia/patologia , Espaço Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Zinco/metabolismo , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Animais , Cardiotônicos/metabolismo , Morte Celular/efeitos dos fármacos , Dissulfetos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metalotioneína/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Pharm Biol ; 55(1): 2264-2269, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29171356

RESUMO

CONTEXT: Tanshinone IIA (Tan IIA) is a constituent of Danshen Salvia miltiorrhiza Bunge (Lamiaceae); however, its antifatigue activity remains unclear. OBJECTIVE: To study the antifatigue properties of Tan IIA and its underlying mechanisms. MATERIALS AND METHODS: In program I, three mouse groups were separately subjected to three gavages with 0, 1 and 6 mg/kg Tan IIA and forced swimming test (FST) weekly for 8 weeks; in program II, one gavage with 0, 2 and 10 mg/kg Tan IIA was administered plus FST weekly for 4 weeks. Serum glucose, lactate, superoxide dismutase (SOD), malondialdehyde (MDA) and blood urea nitrogen (BUN) were determined after final FST. RESULTS: Tan IIA significantly prolonged swimming durations in program I but not in program II. Swimming times were 3208 ± 1054 and 2443 ± 1054 s for the 1 and 6 mg/kg treatments and 856 ± 292 s for the vehicle control. The two doses significantly reduced serum glucose levels (40.3 ± 8.5 and 60.0 1 ± 11.8 mg/kg) and lactate levels (61.3 ± 27.5 and 68.8 ± 8.5 mg/kg) in treated mice compared with those in control mice (137.5 ± 38.6 mg/kg and 122.7 ± 18.2 mg/kg, respectively). However, no significant differences were observed regarding SOD, MDA or BUN levels. DISCUSSION AND CONCLUSIONS: Tan IIA has antifatigue activity and is associated with reductions in serum glucose and lactate levels. Further studies should assess muscle hypertrophy and efficient aerobic glycolysis caused by Tan IIA. Tan IIA has potential as a pharmacological agent for fatigue resistance.


Assuntos
Abietanos/farmacologia , Glicemia/efeitos dos fármacos , Fadiga/tratamento farmacológico , Salvia miltiorrhiza/química , Abietanos/administração & dosagem , Abietanos/isolamento & purificação , Animais , Nitrogênio da Ureia Sanguínea , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Ácido Láctico/sangue , Malondialdeído/metabolismo , Camundongos , Superóxido Dismutase/metabolismo , Natação
4.
PLoS One ; 11(12): e0168600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977796

RESUMO

In obstructive sleep apnea (OSA), recurrent obstruction of the upper airway leads to intermittent hypoxia (IH) during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON) or to a group receiving 10 weeks of exercise training (EXE). During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE), whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect.


Assuntos
Hipóxia/prevenção & controle , Condicionamento Físico Animal/fisiologia , Função Ventricular Esquerda/efeitos dos fármacos , Zinco/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/fisiologia , Interleucina-6/metabolismo , Masculino , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/terapia , Fator de Necrose Tumoral alfa/metabolismo , Zinco/administração & dosagem
5.
Front Physiol ; 7: 462, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790155

RESUMO

Purpose: To investigate the role of sodium-hydrogen exchanger-1 (NHE-1) and exercise training on intermittent hypoxia-induced cardiac fibrosis in obstructive sleep apnea (OSA), using an animal model mimicking the intermittent hypoxia of OSA. Methods: Eight-week-old male Sprague-Dawley rats were randomly assigned to control (CON), intermittent hypoxia (IH), exercise (EXE), or IH combined with exercise (IHEXE) groups. These groups were randomly assigned to subgroups receiving either a vehicle or the NHE-1 inhibitor cariporide. The EXE and IHEXE rats underwent exercise training on an animal treadmill for 10 weeks (5 days/week, 60 min/day, 24-30 m/min, 2-10% grade). The IH and IHEXE rats were exposed to 14 days of IH (30 s of hypoxia-nadir of 2-6% O2-followed by 45 s of normoxia) for 8 h/day. At the end of 10 weeks, rats were sacrificed and then hearts were removed to determine the myocardial levels of fibrosis index, oxidative stress, antioxidant capacity, and NHE-1 activation. Results: Compared to the CON rats, IH induced higher cardiac fibrosis, lower myocardial catalase, and superoxidative dismutase activities, higher myocardial lipid and protein peroxidation and higher NHE-1 activation (p < 0.05 for each), which were all abolished by cariporide. Compared to the IH rats, lower cardiac fibrosis, higher myocardial antioxidant capacity, lower myocardial lipid, and protein peroxidation and lower NHE-1 activation were found in the IHEXE rats (p < 0.05 for each). Conclusion: IH-induced cardiac fibrosis was associated with NHE-1 hyperactivity. However, exercise training and cariporide exerted an inhibitory effect to prevent myocardial NHE-1 hyperactivity, which contributed to reduced IH-induced cardiac fibrosis. Therefore, NHE-1 plays a critical role in the effect of exercise on IH-induced increased cardiac fibrosis.

6.
Chin J Physiol ; 58(4): 254-62, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26211649

RESUMO

Intermittent hypoxia (IH) occurs frequently in patients with obstructive sleep apnoea and can cause ventricular dysfunction. However, whether myocardial inflammation and sodium-hydrogen exchanger-1 (NHE-1) expression play an important role in IH-induced ventricular dysfunction remains unclear. This study aimed to investigate whether short-term exercise provides a protective effect on IH-induced left ventricular (LV) function impairment. Male Sprague-Dawley rats were randomly assigned to 4 groups: control (CON), IH, exercise (EXE) or IH interspersed with EXE (IHEXE). IH rats were exposed to repetitive hypoxia/reoxygenation cycles (2%-6% O2 for 2-5 s per 75 s, followed by 21% O2 for 6 h/day) during the light phase for 12 consecutive days. EXE rats were habituated to treadmill running for 5 days, permitted 2 days of rest, and followed by 5 exercise bouts (30 m/min for 60 min on a 2% grade) on consecutive days during the dark phase. IHEXE rats were exposed to IH during the light phase interspersed with exercise programs during the dark phase on the same day. Cardiac function was quantified by echocardiographic evaluation. Myocardial levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and NHE-1 were determined. IH rats showed LV dysfunction characterized by lower LV fractional shortening (LVFS%) and LV ejection fraction (LVEF%). LV dysfunction was associated with higher myocardial levels of TNF-α, IL-6 and NHE-1 mRNA and protein. These changes were not observed in IHEXE rats (P > 0.05 for all). EXE rats showed lower levels of NHE-1 protein than CON rats (P < 0.05). However, the levels of LVFS%, LVEF%, TNF-α and IL-6 protein and NHE-1 mRNA did not differ between EXE and CON rats (P > 0.05 for all). These data indicated that exercise may provide a protective effect on IH-induced LV dysfunction by attenuating IH-induced myocardial NHE-1 hyperactivity.


Assuntos
Hipóxia/complicações , Condicionamento Físico Animal , Trocadores de Sódio-Hidrogênio/fisiologia , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Interleucina-6/análise , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/análise
7.
J Biomed Sci ; 21: 46, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24885237

RESUMO

BACKGROUND: Intermittent hypoxia (IH) plays a critical role in sleep breathing disorder-associated hippocampus impairments, including neurocognitive deficits, irreversible memory and learning impairments. IH-induced neuronal injury in the hippocampus may result from reduced precursor cell proliferation and the relative numbers of postmitotic differentiated neurons. However, the mechanisms underlying IH-induced reactive oxygen species (ROS) generation effects on cell proliferation and neuronal differentiation remain largely unknown. RESULTS: ROS generation significantly increased after 1-4 days of IH without increased pheochromocytoma-12 (PC12) cell death, which resulted in increased protein phosphatase 2A (PP2A) mRNA and protein levels. After 3-4 days of IH, extracellular signal-regulated kinases 1/2 (ERK1/2) protein phosphorylation decreased, which could be reversed by superoxide dismutase (SOD), 1,10-phenanthroline (Phe), the PP2A phosphorylation inhibitors, okadaic acid (OKA) and cantharidin, and the ERK phosphorylation activator nicotine (p < 0.05). In particular, the significantly reduced cell proliferation and increased proportions of cells in the G0/G1 phase after 1-4 days of IH (p < 0.05), which resulted in decreased numbers of PC12 cells, could be reversed by treatment with SOD, Phe, PP2A inhibitors and an ERK activator. In addition, the numbers of nerve growth factor (NGF)-induced PC12 cells with neurite outgrowths after 3-4 days of IH were less than those after 4 days of RA, which was also reversed by SOD, Phe, PP2A inhibitors and an ERK activator. CONCLUSIONS: Our results suggest that IH-induced ROS generation increases PP2A activation and subsequently downregulates ERK1/2 activation, which results in inhibition of PC12 cell proliferation through G0/G1 phase arrest and NGF-induced neuronal differentiation.


Assuntos
Diferenciação Celular/genética , Ativação Enzimática/genética , Proteína Fosfatase 2/biossíntese , Transtornos do Sono-Vigília/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Hipocampo/enzimologia , Hipóxia/complicações , Hipóxia/enzimologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Neural/farmacologia , Células PC12 , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/patologia , Superóxido Dismutase/metabolismo
8.
Cell Physiol Biochem ; 33(2): 513-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557000

RESUMO

BACKGROUND/AIMS: Intermittent hypoxia (IH) may exert pre-conditioning-like cardioprotective effects and alter Ca(2+) regulation; however, the exact mechanism of these effects remains unclear. Thus, we examined Ca(2+)-handling mechanisms induced by IH in rat neonatal cardiomyocytes. METHODS: Cardiomyocytes were exposed to repetitive hypoxia-re-oxygenation cycles for 1-4 days. Mitochondrial reactive oxygen species (ROS) generation was determined by flow cytometry, and intracellular Ca(2+) concentrations were measured using a live-cell fluorescence imaging system. Protein kinase C (PKC) isoforms and Ca(2+)-handling proteins were analysed using immunofluorescence and western blotting. RESULTS: After IH exposure for 4 days, the rate of Ca(2+) extrusion from the cytosol to the extracellular milieu during 40-mM KCl-induced Ca(2+) mobilization increased significantly, whereas ROS levels increased mildly. IH activated PKC isoforms, which translocated to the membrane from the cytosol, and Na(+)/Ca(2+) exchanger-1, leading to enhanced Ca(2+) efflux capacity. Simultaneously, IH increased sarcoplasmic reticulum (SR) Ca(2+)-ATPase and ryanodine receptor 2 (RyR-2) activities and RyR-2 expression, resulting in improved Ca(2+) uptake and release capacity of SR in cardiomyocytes. CONCLUSIONS: IH-induced mild elevations in ROS generation can enhance Ca(2+) efflux from the cytosol to the extracellular milieu and Ca(2+)-mediated SR regulation in cardiomyocytes, resulting in enhanced Ca(2+)-handling ability.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
9.
Open Access J Sports Med ; 4: 161-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24379721

RESUMO

BACKGROUND: To examine whether short-term, ie, five daily sessions, vigorous dynamic cycling exercise and heat exposure could achieve heat acclimation in trained athletes and the effect of heat acclimation on cutaneous blood flow in the active and nonactive limb. METHODS: Fourteen male badminton and table tennis athletes (age = 19.6 ± 1.2 years) were randomized into a heat acclimation (EXP, n = 7) or nonheat acclimation (CON, n = 7) group. For 5 consecutive days, the EXP group was trained using an upright leg cycle ergometer in a hot environment (38.4°C ± 0.4°C), while the CON group trained in a thermoneutral environment (24.1°C ± 0.3°C). For both groups, the training intensity and duration increased from a work rate of 10% below ventilatory threshold (VT) and 25 minutes per session on day 1, to 10% above VT and 45 minutes per session on day 5. Subjects performed two incremental leg cycle exercise tests to exhaustion at baseline and post-training in both hot and thermoneutral conditions. Study outcome measurements include: maximum oxygen uptake (VO2max); exercise heart rate (HR); O2 pulse; exercise time to exhaustion (tmax); skin blood flow in the upper arm (SkBFa) and quadriceps (SkBFq); and mean skin (Tsk). RESULTS: The significant heat-acclimated outcome measurements obtained during high-intensity leg cycling exercise in the high ambient environment are: (1) 56%-100% reduction in cutaneous blood flow to the active limbs during leg cycling exercise; (2) 28% drop in cutaneous blood flow in nonactive limbs at peak work rate; (3) 5%-10% reduction in heart rate (HR); (4) 10% increase in maximal O2 pulse; and (5) 6.6% increase in tmax. CONCLUSION: Heat acclimation can be achieved with five sessions of high-intensity cycling exercise in the heat in trained athletes, and redistribution of cutaneous blood flow in the skin and exercising muscle, and enhanced cardiovascular adaptations provide the heat-acclimated athletes with the capability to increase their endurance time in the hot environment.

10.
Eur J Appl Physiol ; 111(8): 1939-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21249391

RESUMO

We investigated whether exercise provides beneficial effects to attenuate intermittent hypoxia (IH)-induced myocardial apoptosis. Male Sprague-Dawley rats were randomly assigned to four groups: control (CON), IH, exercise (EXE) or IH interspersed with EXE (IHEXE). IH rats were exposed to repetitive hypoxia-reoxygenation cycles (30 s of 5% O(2); 45 s of 21% O(2), 6 h day(-1)) during the light phase (1000-1600 h) for 12 consecutive days. EXE rats were habituated to treadmill running for 5 days, permitted 2 days of rest, followed by 5 exercise bouts (30 m min(-1) for 60 min on a 2% grade) on consecutive days during the dark phase (2000-2200 h). IHEXE rats were exposed to IH during the light phase interspersed with exercise programs during the dark phase on the same day. Apoptosis levels, cytochrome c (Cyt-c), cleaved caspase-3, oxidative stress and antioxidant capacity were determined in the left ventricular (LV) myocardium. IH rats showed higher myocardial levels of the apoptotic index, mitochondria-released Cyt-c, cleaved caspase-3 and oxidative stress and lower catalase activity levels than CON rats (p < 0.05, for all). These changes were not observed in EXE rats (p > 0.05, for all) except that catalase activity increased (p < 0.05). IHEXE rats showed lower myocardial levels of apoptotic index, mitochondria-released Cyt-c, cleaved caspase-3 and oxidative stress and higher catalase activity levels (p < 0.05, for all) than IH rats. We conclude that short-term exercise provides potent cardioprotective effects by attenuating IH-induced myocardial apoptosis.


Assuntos
Apoptose/fisiologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Condicionamento Físico Animal/fisiologia , Disfunção Ventricular Esquerda/prevenção & controle , Animais , Hipóxia Celular/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Periodicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/metabolismo
11.
Sleep Breath ; 15(4): 845-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21136300

RESUMO

RATIONALE: Chronic intermittent hypoxia (CIH) is thought to induce several cardiovascular effects in patients with obstructive sleep apnoea (OSA). However, the effects of CIH on patients with long-standing hypertension are unknown. PURPOSE: This prospective study aimed to investigate the influence of combined OSA and hypertension on cardiomyocyte death. METHODS: Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were exposed to repetitive hypoxia-reoxygenation cycles (30 s of 5% O(2); 45 s of 21% O(2)) or room air for 6 h/day during the light phase (10 a.m.-4 p.m.) for 10, 20, or 30 days, and the levels of necrosis and apoptosis induced in their left ventricular cardiomyocyte were examined. RESULTS: CIH increased the accumulation of reactive oxygen species, which induced cardiomyocyte necrosis in WKY and SHR (both p < 0.05). Cardiomyocyte oxidative stress levels by CIH were higher in SHR than in WKY (p < 0.05); therefore, cardiomyocyte necrosis was amplified (p < 0.05). Notably, if a superoxide-scavenging agent is injected beforehand, cardiomyocyte necrosis can be effectively inhibited (p < 0.05). When WKY and SHR are exposed to CIH, increases in mitochondria-released cytochrome c and activation of caspase-3 are found in the cytosolic fraction only in WKY. CONCLUSIONS: CIH causes cardiomyocyte loss in SHR mainly through cardiomyocyte necrosis. In WKY however, CIH simultaneously induces apoptosis and necrosis of cardiomyocytes.


Assuntos
Morte Celular/fisiologia , Hipertensão/patologia , Miócitos Cardíacos/patologia , Disfunção Ventricular Esquerda/patologia , Animais , Peroxidação de Lipídeos/fisiologia , Masculino , Microscopia de Fluorescência , Necrose , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Superóxido Dismutase/metabolismo
12.
J Chin Med Assoc ; 66(2): 84-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12716005

RESUMO

BACKGROUND: Inter-cultural difference in the prevalence of lower urinary tract symptoms (LUTS) has been recognized. The purpose of present study was to evaluate the prevalence of LUTS and the correlation between symptoms with age and urinary flow rate in a community-based sample of Taiwanese men. METHODS: Invitation letters were sent out to 4,488 men > or = 40 years old living in Ling-Ya District, Kaohsiung City. All responders were scheduled for thorough history taking, International Prostate Symptom Score (IPSS) assessment, digital rectal examination, serum prostatic specific antigen (PSA) and uroflow determinations. The correlation of IPSS with age, PSA levels and urinary flow rate were evaluated. RESULTS: A total of 306 men (6.8%) accepted our invitation; 207 of them had validated data for analysis. The confidence interval was 6.79 at 95% confidence level. Twenty-one men (10.1%) had serum PSA > 4 ng/ml. The median PSA increased with advancing age (p = 0.001). Severe symptoms were reported by 9.7%, while 40.1% reported moderate symptoms. The percentage of men with IPSS > or = 8 increased withage (p < 0.001). There was a positive correlation between IPSS and age (r = 0.380). Negative correlation between IPSS and voided volume (r = -0.255), maximal flow rate (r = -0.363), and mean flow rate (r = -0.401) were also noted. CONCLUSIONS: In this community-based study, moderate to severe lower urinary tract symptoms were reported by 50% of assessable men over the age of 40 years. This prevalence was similar to that of Japanese but higher than those of American, French, and Scottish men. The IPSS was positively correlated with age, and negatively correlated with uroflow rate and voided volume. However, because of extremely low and uneven response rates among each age category, this data must be interpreted with caution.


Assuntos
Hiperplasia Prostática/epidemiologia , Transtornos Urinários/epidemiologia , Urodinâmica , Adulto , Idoso , Análise Custo-Benefício , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Antígeno Prostático Específico/sangue , Taiwan/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...