Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36143153

RESUMO

This study evaluated dose differences in normal organs at risk, such as the lungs, heart, left anterior descending artery (LAD), right coronary artery, left ventricle, and right breast under personalized breast holder (PERSBRA), when using intensity-modulated radiation therapy (IMRT). This study evaluated the radiation protection offered by PERSBRA in left breast cancer radiation therapy. Here, we retrospectively collected data from 24 patients with left breast cancer who underwent breast-conserving surgery as well as IMRT radiotherapy. We compared the dose differences in target coverage and organs at risk with and without PERSBRA. For target coverage, tumor prescribed dose 95% coverage, conformity index, and homogeneity index were evaluated. For organs at risk, we compared the mean heart dose, mean left ventricle dose, LAD maximum and mean dose, mean left lung receiving 20 Gy, 10 Gy, and 5 Gy of left lung volume, maximum and mean coronary artery of the right, maximum of right breast, and mean dose. Good target coverage was achieved with and without PERSBRA. When PERSBRA was used with IMRT, the mean dose of the heart decreased by 42%, the maximum dose of LAD decreased by 26.4%, and the mean dose of LAD decreased by 47.0%. The mean dose of the left ventricle decreased by 54.1%, the volume (V20) of the left lung that received 20 Gy decreased by 22.8%, the volume (V10) of the left lung that received 10 Gy decreased by 19.8%, the volume (V5) of the left lung that received 5 Gy decreased by 15.7%, and the mean dose of the left lung decreased by 23.3%. Using PERSBRA with IMRT greatly decreases the dose to organs at risk (left lung, heart, left ventricle, and LAD). This study found that PERSBRA with IMRT can achieve results similar to deep inspiration breath-hold radiotherapy (DIBH) in terms of reducing the heart radiation dose and the risk of developing heart disease in patients with left breast cancer who cannot undergo DIBH.

2.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35804977

RESUMO

PURPOSE: Breast immobilization with personalized breast holder (PERSBRA) is a promising approach for normal organ protection during whole breast radiotherapy. The aim of this study is to evaluate the skin surface dose for breast radiotherapy with PERSBRA using different radiotherapy techniques. MATERIALS AND METHODS: We designed PERSBRA with three different mesh sizes (large, fine and solid) and applied them on an anthropomorphic(Rando) phantom. Treatment planning was generated using hybrid, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques to deliver a prescribed dose of 5000 cGy in 25 fractions accordingly. Dose measurement with EBT3 film and TLD were taken on Rando phantom without PERSBRA, large mesh, fine mesh and solid PERSBRA for (a) tumor doses, (b) surface doses for medial field and lateral field irradiation undergoing hybrid, IMRT, VMAT techniques. RESULTS: The tumor dose deviation was less than five percent between the measured doses of the EBT3 film and the TLD among the different techniques. The application of a PERSBRA was associated with a higher dose of the skin surface. A large mesh size of PERSBRA was associated with a lower surface dose. The findings were consistent among hybrid, IMRT, or VMAT techniques. CONCLUSIONS: Breast immobilization with PERSBRA can reduce heart toxicity but leads to a build-up of skin surface doses, which can be improved with a larger mesh design for common radiotherapy techniques.

3.
Med Dosim ; 37(4): 417-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22552120

RESUMO

In patients given postmastectomy radiotherapy (PMRT), the chest wall is a very thin layer of soft tissue with a low-density lung tissue behind. Chest wall treated in this situation with a high-energy photon beam presents a high dosimetric uncertainty region for both calculation and measurement. The purpose of this study was to measure and to evaluate the surface and superficial doses for patients requiring PMRT with different treatment techniques. An elliptic cylinder cork and superflab boluses were used to simulate the lung and the chest wall, respectively. Sets of computed tomography (CT) images with different chest wall thicknesses were acquired for the study phantom. Hypothetical clinical target volumes (CTVs) were outlined and modified to fit a margin of 1-3 mm, depending on the chest wall thickness, away from the surface for the sets of CT images. The planning target volume (PTV) was initially created by expanding an isotropic 3-mm margin from the CTV, and then a margin of 3 mm was shrunk from the phantom surface to avoid artifact-driven results in the beam-let intensity. Treatment techniques using a pair of tangential wedged fields (TWFs) and 4-field intensity-modulated radiation therapy (IMRT) were designed with a prescribed fraction dose (D(p)) of 180 cGy. Superficial dose profiles around the phantom circumference at depths of 0, 1, 2, 3, and 5 mm were obtained for each treatment technique using radiochromic external beam therapy (EBT) films. EBT film exhibits good characteristics for dose measurements in the buildup region. Underdoses at the median and lateral regions of the TWF plans were shown. The dose profiles at shallow depths for the TWF plans show a dose buildup about 3 mm at the median and lateral tangential incident regions with a surface dose of about 52% of D(p). The dose was gradually increased toward the most obliquely tangential angle with a maximum dose of about 118% of D(p.) Dose profiles were more uniform in the PTV region for the 4-F IMRT plans. Most of the PTV region had doses >94% of D(p) at depths >1 mm. The mean surface dose was about 65% of D(p) for the 4-F IMRT plans. The maximum dose for the 4-F IMRT plans was <118.4% of D(p). The application of added bolus has to consider the treatment technique, tumor coverage, and possible skin reactions. For PMRT, if the chest surface and wall are treated adequately, at least 3 mm bolus should be added to the chest wall when tangential beams and 6-MV photon energy are arranged. However, when the surface and superficial regions are not high-risk areas, an IMRT plan with tangential beams and 6-MV photon energy can provide uniform dose distributions within the PTV, spare the skin reaction, and deliver sufficient doses to the chest wall at depths >1 mm.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Mastectomia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Adjuvante/métodos , Tomografia Computadorizada por Raios X/instrumentação
4.
J Phys Chem A ; 111(38): 9286-90, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17696324

RESUMO

The local and global structural changes of cytochrome c induced by urea in aqueous solution have been studied using X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). According to the XAS result, both the native (folded) protein and the unfolded protein exhibit the same preedge features taken at Fe K-edge, indicating that the Fe(III) in the heme group of the protein maintains a six-coordinated local structure in both the folded and unfolded states. Furthermore, the discernible differences in the X-ray absorption near-edge structure (XANES) of these two states are attributed to a possible spin transition of the Fe(III) from a low-spin state to a high-spin state during the unfolding process. The perseverance of six-coordination and the spin transition of the iron are reconciled by a proposed ligand exchange, with urea and water molecules replacing the methionine-80 and histidine-18 axial ligands, respectively. The SAXS result reveals a significant morphology change of cytochrome c from a globular shape of a radius of gyration R(g) = 12.8 A of the native protein to an elongated ellipsoid shape of R(g) = 29.7 A for the unfolded protein in the presence of concentrated urea. The extended X-ray absorption fine structure (EXAFS) data unveil the coordination geometries of Fe(III) in both the folded and unfolded state of cytochrome c. An initial spin transition of Fe(III) followed by an axial ligand exchange, accompanied by the change in the global envelope, is proposed for what happened in the protein unfolding process of cytochrome c.


Assuntos
Citocromos c/química , Ureia/química , Água/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Soluções/química , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...