Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685092

RESUMO

Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.

2.
Plants (Basel) ; 11(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145763

RESUMO

Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent. The performance of this process with regard to the bioactivity was assessed through the Folin-Ciocalteu assay, total flavonoid content, DPPH, ABTS and FRAP antioxidant tests. The phenolic composition of the extracts was also determined through HPLC-MS and quantified through HPLC-DAD. When compared to treatment controls, PEF + MAE treated samples presented enhanced yields of total phenolic content and radical scavenging activity in all analyzed residues (Tukey test significance: 95%). The chromatographic studies reveal the presence of caffeic acid on the three analyzed by-products. The HPLC-DAD caffeic acid quantification validated that a combination of MAE + PEF treatment in yellow coffee pulp had the highest caffeic acid concentration of all studied extraction methods.

3.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956931

RESUMO

Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.


Assuntos
Nanocompostos , Prodigiosina , Antibacterianos/química , Reatores Biológicos , Prodigiosina/química , Prodigiosina/farmacologia , Serratia marcescens/química
4.
Plants (Basel) ; 9(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266445

RESUMO

Mexico has a great diversity of cacti, however, many of their fruits have not been studied in greater depth. Several bioactive compounds available in cacti juices extract have demonstrated nutraceutical properties. Two cactus species are interesting for their biologically active pigments, which are chico (Pachycereus weberi (J. M. Coult.) Backeb)) and jiotilla (Escontria chiotilla (Weber) Rose)). Hence, the goal of this work was to evaluate the bioactive compounds, i.e., betalains, total phenolic, vitamin C, antioxidant, and mineral content in the extract of the above-mentioned P. weberi and E. chiotilla. Then, clarified extracts were evaluated for their antioxidant activity and cytotoxicity (cancer cell lines) potentialities. Based on the obtained results, Chico fruit extract was found to be a good source of vitamin C (27.19 ± 1.95 mg L-Ascorbic acid/100 g fresh sample). Moreover, chico extract resulted in a high concentration of micronutrients, i.e., potassium (517.75 ± 16.78 mg/100 g) and zinc (2.46 ± 0.65 mg/100 g). On the other hand, Jiotilla has a high content of biologically active pigment, i.e., betaxanthins (4.17 ± 0.35 mg/g dry sample). The antioxidant activities of clarified extracts of chico and jiotilla were 80.01 ± 5.10 and 280.88 ± 7.62 mg/100 g fresh sample (DPPH method), respectively. From the cytotoxicity perspective against cancer cell lines, i.e., CaCo-2, MCF-7, HepG2, and PC-3, the clarified extracts of chico showed cytotoxicity (%cell viability) in CaCo-2 (49.7 ± 0.01%) and MCF-7 (45.56 ± 0.05%). A normal fibroblast cell line (NIH/3T3) was used, as a control, for comparison purposes. While jiotilla extract had cytotoxicity against HepG2 (47.31 ± 0.03%) and PC-3 (53.65 ± 0.04%). These results demonstrated that Chico and jiotilla are excellent resources of biologically active constituents with nutraceuticals potentialities.

5.
Mar Drugs ; 15(6)2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604646

RESUMO

Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO2). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of ß-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.


Assuntos
Fatores Biológicos/química , Dióxido de Carbono/química , Spirulina/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Fatores Biológicos/farmacologia , Candida albicans/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Luteína/química , Luteína/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pressão , Riboflavina/química , Riboflavina/farmacologia , Solventes/química , Temperatura , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia , beta Caroteno/química , beta Caroteno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA