Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
2.
BMC Med Inform Decis Mak ; 23(1): 173, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653403

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a global public health concern. Therefore, to provide timely intervention for non-hospitalized high-risk patients and rationally allocate limited clinical resources is important to mine the key factors when designing a CKD prediction model. METHODS: This study included data from 1,358 patients with CKD pathologically confirmed during the period from December 2017 to September 2020 at Zhongshan Hospital. A CKD prediction interpretation framework based on machine learning was proposed. From among 100 variables, 17 were selected for the model construction through a recursive feature elimination with logistic regression feature screening. Several machine learning classifiers, including extreme gradient boosting, gaussian-based naive bayes, a neural network, ridge regression, and linear model logistic regression (LR), were trained, and an ensemble model was developed to predict 24-hour urine protein. The detailed relationship between the risk of CKD progression and these predictors was determined using a global interpretation. A patient-specific analysis was conducted using a local interpretation. RESULTS: The results showed that LR achieved the best performance, with an area under the curve (AUC) of 0.850 in a single machine learning model. The ensemble model constructed using the voting integration method further improved the AUC to 0.856. The major predictors of moderate-to-severe severity included lower levels of 25-OH-vitamin, albumin, transferrin in males, and higher levels of cystatin C. CONCLUSIONS: Compared with the clinical single kidney function evaluation indicators (eGFR, Scr), the machine learning model proposed in this study improved the prediction accuracy of CKD progression by 17.6% and 24.6%, respectively, and the AUC was improved by 0.250 and 0.236, respectively. Our framework can achieve a good predictive interpretation and provide effective clinical decision support.


Assuntos
Hospitais , Urinálise , Masculino , Humanos , Teorema de Bayes , Área Sob a Curva , Aprendizado de Máquina
3.
J Mol Med (Berl) ; 101(7): 877-890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246982

RESUMO

Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1ß. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1ß. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Camundongos Knockout , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo
4.
Shock ; 59(6): 930-940, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036960

RESUMO

ABSTRACT: Contrast-induced acute kidney injury (CI-AKI) is a serious and common complication in patients receiving intravenous iodinated contrast medium (CM). Clinically, congestive heart failure is the most critical risk factor for CI-AKI and always leads to renal congestion for increased central venous pressure and fluid overload. Here, we aimed to investigate a novel CI-AKI rat model based on renal congestion. After the exploratory testing phase, we successfully constructed a CI-AKI rat model by inducing renal congestion by clamping the unilateral renal vein, removing the contralateral kidney, and a single tail vein injection of iohexol. This novel CI-AKI rat model showed elevated serum creatinine, urea nitrogen, and released tubular injury biomarkers (KIM-1 and NGAL), reduced glomerular filtration rate, and typical pathologic features of CM-induced tubular injury with extensive foamy degeneration, tubular edema, and necrosis. Electron microscopy and confocal laser scanning revealed excessive mitochondrial fission and increased translocation of Drp1 from the cytoplasm to the mitochondrial surface in tubular epithelial cells. As a Drp1 inhibitor, Mdivi-1 attenuated excessive mitochondrial fission and exerted reno-protection against CM injury. Simultaneously, Mdivi-1 alleviated oxidative stress, apoptosis, and inflammatory responses induced by CM toxicity. We concluded that renal congestion exacerbated CM toxicity and presented a novel CI-AKI rat model. Excessive mitochondrial fission plays a crucial role in CM reno-toxicity and is a promising target for preventing and treating CI-AKI.


Assuntos
Injúria Renal Aguda , Dinâmica Mitocondrial , Humanos , Rim/patologia , Injúria Renal Aguda/patologia , Meios de Contraste/efeitos adversos
5.
Clin Ther ; 45(4): 364-374, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997447

RESUMO

PURPOSE: Primary membranous nephropathy (PMN) is the most frequent cause of nephrotic syndrome in adults. Rituximab monotherapy has emerged as a front-line treatment for patients with PMN, but potential markers for predicting the response to rituximab are unknown. METHODS: In this single-arm retrospective pilot study, 48 patients with PMN without previous immunosuppressive therapy were enrolled. All patients were treated with rituximab and were followed up for at least 6 months. The primary end point was the achievement of complete or partial remission at 6 months. The subsets of lymphocytes were collected at baseline, 1 month, 3 months and 6 months to identify prognostic factors for achieving remission of PMN with rituximab therapy. FINDINGS: A total of 58.3% of patients (28/48) achieved remission. Lower serum creatinine, greater serum albumin, and greater phospholipase A2 receptor antigen detected in kidney biopsy at baseline were found in the remission group. After multiple adjustments, a high percentage of natural killer (NK) cells at baseline, especially ≥15.7%, was strongly associated with remission (relative risk = 1.62; 95% CI, 1.00-2.62; P = 0.049), and patients with a response to rituximab had a greater mean percentage of NK cells during the follow-up period compared with nonresponders. Analysis using a receiver operating characteristic curve indicated prognostic value of the NK-cell percentage at baseline, with an area under the curve of 0.716 (95% CI, 0.556-0.876; P = 0.021). IMPLICATIONS: The findings from this retrospective pilot study suggest that a high percentage, especially ≥15.7%, of NK cells at baseline might predict a response to rituximab treatment. These findings provide a basis for designing larger-scale studies to test the predictive value of NK cells in patients with PMN undergoing rituximab treatment.


Assuntos
Glomerulonefrite Membranosa , Adulto , Humanos , Rituximab/uso terapêutico , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/tratamento farmacológico , Projetos Piloto , Estudos Retrospectivos , Resultado do Tratamento , Imunossupressores/efeitos adversos
6.
iScience ; 25(12): 105620, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465115

RESUMO

TWIK-related acid-sensitive K+ channel-2 (TASK-2, encoded by Kcnk5) is essential in cell biological processes, by regulating transmembrane K+ balance. In the present study, we aimed to clarify the role of TASK-2 in renal fibrosis and explore the underlying mechanism. We found that TASK-2 level was elevated in the renal tubular UUO- and UIR-induced renal fibrosis as well as in patients with renal tubulointerstitial fibrosis. Knockout of Kcnk5 or inhibition of TASK-2 in renal tubules attenuated G2/M cell-cycle arrest and alleviated renal fibrosis. Mechanistically, demethylase fat mass and obesity-associated protein (FTO) reduced N6-adenosine methylation (m6A) of Kcnk5 mRNA following renal fibrosis. FTO deficiency attenuated the upregulation of TASK-2 and renal fibrosis. The results demonstrated the crucial role of TASK-2 in renal fibrosis, which is conducive to a better understanding of the pathogenesis of renal fibrosis. TASK-2 may be a potential treatment strategy to alleviate the development of renal fibrosis.

7.
Neuroimage ; 264: 119666, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206939

RESUMO

EEG signals exhibit commonality and variability across subjects, sessions, and tasks. But most existing EEG studies focus on mean group effects (commonality) by averaging signals over trials and subjects. The substantial intra- and inter-subject variability of EEG have often been overlooked. The recently significant technological advances in machine learning, especially deep learning, have brought technological innovations to EEG signal application in many aspects, but there are still great challenges in cross-session, cross-task, and cross-subject EEG decoding. In this work, an EEG-based biometric competition based on a large-scale M3CV (A Multi-subject, Multi-session, and Multi-task Database for investigation of EEG Commonality and Variability) database was launched to better characterize and harness the intra- and inter-subject variability and promote the development of machine learning algorithm in this field. In the M3CV database, EEG signals were recorded from 106 subjects, of which 95 subjects repeated two sessions of the experiments on different days. The whole experiment consisted of 6 paradigms, including resting-state, transient-state sensory, steady-state sensory, cognitive oddball, motor execution, and steady-state sensory with selective attention with 14 types of EEG signals, 120000 epochs. Two learning tasks (identification and verification), performance metrics, and baseline methods were introduced in the competition. In general, the proposed M3CV dataset and the EEG-based biometric competition aim to provide the opportunity to develop advanced machine learning algorithms for achieving an in-depth understanding of the commonality and variability of EEG signals across subjects, sessions, and tasks.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina , Bases de Dados Factuais
8.
J Biol Chem ; 294(22): 8894-8906, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31010826

RESUMO

Early embryonic endocardium undergoes endothelial-to-mesenchymal transition to form cardiac cushion mesenchymal cells (MCs). Embryonic endocardium also gives rise to fibroblasts, intramyocardial adipocytes, and coronary mural cells, including smooth muscle cells and pericytes, in development. Whether endocardial cells directly differentiate into fibroblasts, coronary mural cells, and adipocytes or indirectly via an intermediate stage of endocardial-derived cushion MCs remains unknown. In addition to endocardium, epicardium and neural crest also contribute to cardiac cushion MCs. Given the developmental heterogeneity of cushion MCs and the lack of specific markers for endocardial-derived cushion MCs, conventional genetic lineage tracing utilizing Cre recombinase driven by one specific regulatory element is not sufficient to examine the fates of endocardial-derived cushion MCs. Intersectional genetic targeting approaches, which combine regulatory elements from two or more genes, have been employed to increase the specificity of cell targeting. Here, we developed a dual-recombinase intersectional targeting approach using Nfatc1-Dre, Sox9-CreER, and Cre/Dre double-dependent reporter Ai66 to specifically label endocardial-derived cushion MCs. Taking advantage of intersectional lineage tracing, we found that a subset of cardiac cells including fibroblasts, coronary mural cells, and intramyocardial adipocytes in adult hearts were derived from endocardial-derived cushion MCs. Our study suggests that embryonic endocardium contributes to cushion MCs first, and then endocardial-derived cushion MCs migrate into myocardium and differentiate into fibroblasts, coronary mural cells, and adipocytes in development. Understanding developmental origins of cardiac cell lineages will provide us more insights into cardiac development, regeneration, and diseases.


Assuntos
Adipócitos/citologia , Linhagem da Célula , Endocárdio/citologia , Células Endoteliais/citologia , Fibroblastos/citologia , Células-Tronco Mesenquimais/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...