Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Rice (N Y) ; 17(1): 34, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739288

RESUMO

Plant metabolites including anthocyanins play an important role in the growth of plants, as well as in regulating biotic and abiotic stress responses to the environment. Here we report comprehensive profiling of 3315 metabolites and a further metabolic-based genome-wide association study (mGWAS) based on 292,485 SNPs obtained from 311 rice accessions, including 160 wild and 151 cultivars. We identified hundreds of common variants affecting a large number of secondary metabolites with large effects at high throughput. Finally, we identified a novel gene namely OsLSC6 (Oryza sativa leaf sheath color 6), which encoded a UDP 3-O-glucosyltransferase and involved in the anthocyanin biosynthesis of Cyanidin-3-Galc (sd1825) responsible for leaf sheath color, and resulted in significant different accumulation of sd1825 between wild (purple) and cultivars (green). The results of knockout transgenic experiments showed that OsLSC6 regulated the biosynthesis and accumulation of sd1825, controlled the purple leaf sheath. Our further research revealed that OsLSC6 also confers resistance to cold stress during the seedling stage in rice. And we identified that a SNP in OsLSC6 was responsible for the leaf sheath color and chilling tolerance, supporting the importance of OsLSC6 in plant adaption. Our study could not only demonstrate that OsLSC6 is a vital regulator during anthocyanin biosynthesis and abiotic stress responses, but also provide a powerful complementary tool based on metabolites-to-genes analysis by mGWAS for functional gene identification andpromising candidate in future rice breeding and improvement.

2.
Front Behav Neurosci ; 18: 1357453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562516

RESUMO

Introduction: Autism spectrum disorder (ASD) is a neurological condition that is marked by deficits in social interaction, difficulty expressing oneself, lack of enthusiasm, and stereotypical conduct. The TOMATIS training method is an effective music therapy for children with ASD for its individually developed programs to improve behavioral deficits. Methods: The research employed both longitudinal and crosssectional designs. Results: In the cross-sectional study, the experimental group showed significant improvement in symptoms after TOMATIS training compared to the control group of children with ASD. The results validated the effect of TOMATIS treatment for ASD-related deficits, including perceptual-motor, attentional, social, and emotional issues. Discussion: ASD's auditory hypersensitivity hampers social information processing, but TOMATIS enhances cochlear frequency selectivity, aiding in capturing relevant auditory stimuli. In addition, the longitudinal study confirmed these findings, which proved TOMATIS training effective in clinically treating ASD. This study focused on audiometric indicators and behavioural improvement, elucidating the mechanisms behind the training's success. Behavioral improvements might stem from TOMATIS' frequency selectivity, reshaping auditory organ-cortical feedback loops to filter interference and focus on valid information.

3.
Appl Environ Microbiol ; 90(4): e0179923, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470148

RESUMO

Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE: Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.


Assuntos
Microbioma Gastrointestinal , Longevidade , Abelhas , Animais , Longevidade/fisiologia , Insulina , Antioxidantes , Cetonas
4.
Microbiol Spectr ; 12(4): e0333023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470483

RESUMO

The root-associated microbiota has a close relation to the life activities of plants, and its composition is affected by the rhizospheric environment and plant genotypes. Rice (Oryza sativa) was domesticated from the ancestor species Oryza rufipogon. Many important agricultural traits and adversity resistance of rice have changed during a long time of natural domestication and artificial selection. However, the influence of rice genotypes on root microbiota in important agricultural traits remains to be explained. In this study, we performed 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing to generate bacterial and fungal community profiles of O. rufipogon and O. sativa, both of which were planted in a farm in Guangzhou and had reached the reproductive stage. We compared their root microbiota in detail by alpha diversity, beta diversity, different species, core microbiota, and correlation analyses. We found that the relative abundance of bacteria was significantly higher in the cultivated rice than in the common wild rice, while the relative abundance of fungi was the opposite. Significant differences in agricultural traits between O. rufipogon and O. sativa showed a high correlation with core microorganisms in the two Oryza species, which only existed in either or had obviously different abundance in both two species, indicating that rice genotype/phenotype had a strong influence on recruiting specific microorganisms. Our study provides a theoretical basis for the in-depth understanding of rice root microbiota and the improvement of rice breeding from the perspective of the interaction between root microorganisms and plants.IMPORTANCEPlant root microorganisms play a vital role not only in plant growth and development but also in responding the biotic and abiotic stresses. Oryza sativa is domesticated from Oryza rufipogon which has many excellent agricultural traits especially containing resistance to biotic and abiotic stresses. To improve the yield and resistance of cultivated rice, it is particularly important to deeply research on differences between O. sativa and O. rufipogon and find beneficial microorganisms to remodel the root microbiome of O. sativa.


Assuntos
Microbiota , Oryza , Oryza/microbiologia , Domesticação , RNA Ribossômico 16S/genética , Microbiota/genética , Agricultura
5.
Insect Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414323

RESUMO

Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.

6.
Sci Bull (Beijing) ; 69(7): 968-977, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331705

RESUMO

Lake-effect snowfall (LES) occurs when cold air moves across open lakes. LES is expected to occur more frequently over the TP, due to the intensified lake expansion caused by intensified global warming. Thus, there is an urgent need to comprehensively assess the LES over the TP. Here, we revealed that the LES is triggered by westerly southward shift leading to the drop in air temperature and is positively correlated with lake area, wind speed and longitude across 12 large lakes (>300 km2) based on satellite observations and reanalysis data. Using a sensitivity model simulation, we determined that large lakes in the southern TP contributed to more than 50% of the snowfall in the downwind area in 2013. Projections indicate that the westerly-triggered LES will increase under the future RCP4.5 climate warming scenario, highlighting the importance of developing adaptive policies to address the growing risks associated with future LES.

7.
Plants (Basel) ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337962

RESUMO

Chickpea (Cicer arietinum L.), encompassing the desi and kabuli varieties, is a beloved pulse crop globally. Its cultivation spans over fifty countries, from the Indian subcontinent and southern Europe to the Middle East, North Africa, the Americas, Australia, and China. With a rich composition of carbohydrates and protein, constituting 80% of its dry seed mass, chickpea is also touted for its numerous health benefits, earning it the title of a 'functional food'. In the past two decades, research has extensively explored the rhizobial diversity associated with chickpea and its breeding in various countries across Europe, Asia, and Oceania, aiming to understand its impact on the sustainable yield and quality of chickpea crops. To date, four notable species of Mesorhizobium-M. ciceri, M. mediterraneum, M. muleiense, and M. wenxiniae-have been reported, originally isolated from chickpea root nodules. Other species, such as M. amorphae, M. loti, M. tianshanense, M. oportunistum, M. abyssinicae, and M. shonense, have been identified as potential symbionts of chickpea, possibly acquiring symbiotic genes through lateral gene transfer. While M. ciceri and M. mediterraneum are widely distributed and studied across chickpea-growing regions, they remain absent in China, where M. muleiense and M. wenxiniae are the sole rhizobial species associated with chickpea. The geographic distribution of chickpea rhizobia is believed to be influenced by factors such as genetic characteristics, competitiveness, evolutionary adaptation to local soil conditions, and compatibility with native soil microbes. Inoculating chickpea with suitable rhizobial strains is crucial when introducing the crop to new regions lacking indigenous chickpea rhizobia. The introduction of a novel chickpea variety, coupled with the effective use of rhizobia for inoculation, offers the potential not only to boost the yield and seed quality of chickpeas, but also to enhance crop productivity within rotation and intercropped systems involving chickpea and other crops. Consequently, this advancement holds the promise to drive forward the cause of sustainable agriculture on a global scale.

8.
BMC Plant Biol ; 24(1): 147, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418937

RESUMO

Carbohydrates, proteins, lipids, minerals and vitamins are nutrient substances commonly seen in rice grains, but anthocyanidin, with benefit for plant growth and animal health, exists mainly in the common wild rice but hardly in the cultivated rice. To screen the rice germplasm with high intensity of anthocyanidins and identify the variations, we used metabolomics technique and detected significant different accumulation of anthocyanidins in common wild rice (Oryza rufipogon, with purple leaf sheath) and cultivated rice (Oryza sativa, with green leaf sheath). In this study, we identified and characterized a well-known MYB transcription factor, OsC1, through phenotypic (leaf sheath color) and metabolic (metabolite profiling) genome-wide association studies (pGWAS and mGWAS) in 160 common wild rice (O. rufipogon) and 151 cultivated (O. sativa) rice varieties. Transgenic experiments demonstrated that biosynthesis and accumulation of cyanidin-3-Galc, cyanidin 3-O-rutinoside and cyanidin O-syringic acid, as well as purple pigmentation in leaf sheath were regulated by OsC1. A total of 25 sequence variations of OsC1 constructed 16 functional haplotypes (higher accumulation of the three anthocyanidin types within purple leaf sheath) and 9 non-functional haplotypes (less accumulation of anthocyanidins within green leaf sheath). Three haplotypes of OsC1 were newly identified in our germplasm, which have potential values in functional genomics and molecular breeding of rice. Gene-to-metabolite analysis by mGWAS and pGWAS provides a useful and efficient tool for functional gene identification and omics-based crop genetic improvement.


Assuntos
Oryza , Animais , Oryza/genética , Antocianinas , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Fatores de Transcrição/genética
9.
Ear Nose Throat J ; : 1455613241228211, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334289

RESUMO

BACKGROUND: Oral mucositis (OM) is a common and severe side effect of radiotherapy in head and neck cancer (HNC). The study aimed to investigate the longitudinal changes in OM and its influencing factors in patients with HNC during radiotherapy. METHODS: This was a retrospective longitudinal observational study. From July 2022 to March 2023, patients with HNC undergoing radiation therapy were enrolled. OM, oral hygiene, oral infections, oral pain, feeding route, and laboratory indicators were measured at 7 times. The influencing factors of OM were analyzed using generalized estimation equations (GEEs). RESULTS: A total of 160 patients were included in this study. The prevalence of severe OM at T0, T1, T2, T3, T4, T5, and T6 was 0, 0, 2.5%, 9.4%, 26.9%, 24.4%, and 26.9%, respectively. The prevalence of grade 1-2 OM at T0, T1, T2, T3, T4, T5, and T6 was 0, 16.3%, 53.1%, 65.1%, 61.9%, 70.7%, and 71.3%, respectively. Duration of diagnosis, clinical stage, N stage, M stage, surgery, diabetes, radiotherapy dose, oral hygiene, oral infection, oral pain, feeding route, and lymphocyte impacted OM significantly in the GEEs multivariate model. CONCLUSIONS: OM occurs in almost all patients with HNC who undergo radiotherapy. Changes in the severity of OM are a dynamic process, with the severity increasing with the cumulative radiotherapy dose. Specialist oral evaluation and oral care are needed to alleviate the severity of OM in HNC patients.

10.
Oncol Lett ; 27(3): 102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298430

RESUMO

Breast cancer is a leading cause of cancer-related death in women worldwide; therefore, there is an urgent need to develop novel therapies and drugs that prolong the survival and improve the quality of life of patients with breast cancer. In the present study, the effects and underlying mechanisms of OTU domain-containing 7B (OTUD7B) knockdown on breast cancer were investigated using MDA-MB-468, MDA-MB-453 and MCF7 cell lines. The results of Cell Counting Kit 8, colony formation and tumor sphere formation experiments showed that OTUD7B knockdown caused a significant decrease in the proliferation and sphere formation ability of MDA-MB-468, MDA-MB-453 and MCF7 cells in vitro. Moreover, western blotting results showed that CD44, EpCAM, SOX2 and Nanog protein levels were significantly decreased following OTUD7B knockdown. These findings indicated that OTUD7B knockdown reduced the proliferation and stemness of breast cancer cells. Co-immunoprecipitation assays demonstrated that OTUD7B interacted with forkhead box protein M1 (FOXM1) and reduced the polyubiquitylation of FOXM1 in breast cancer cells; accordingly, FOXM1 protein levels were significantly decreased by OTUD7B knockdown. Furthermore, the overexpression of FOXM1 reduced the inhibitory effects of OTUD7B knockdown on breast cancer cells. The findings of the present study provide new insights into the oncogenic role of OTUD7B in breast cancer and indicate that OTUD7B may serve as a therapeutic target for breast cancer.

11.
Rice (N Y) ; 17(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170405

RESUMO

BACKGROUND: With the increasing frequency of climatic anomalies, high temperatures and long-term rain often occur during the rice-harvesting period, especially for early rice crops in tropical and subtropical regions. Seed dormancy directly affects the resistance to pre-harvest sprouting (PHS). Therefore, in order to increase rice production, it is critical to enhance seed dormancy and avoid yield losses to PHS. The elucidation and utilization of the seed dormancy regulation mechanism is of great significance to rice production. Preliminary results indicated that the OsMKKK62-OsMKK3-OsMPK7/14 module might regulate ABA sensitivity and then control seed dormancy. The detailed mechanism is still unclear. RESULTS: The overexpression of OsMKK3 resulted in serious PHS. The expression levels of OsMKK3 and OsMPK7 were upregulated by ABA and GA at germination stage. OsMKK3 and OsMPK7 are both located in the nucleus and cytoplasm. The dormancy level of double knockout mutant mkk3/mft2 was lower than that of mkk3, indicating that OsMFT2 functions in the downstream of MKK3 cascade in regulating rice seeds germination. Biochemical results showed that OsMPK7 interacted with multiple core ABA signaling components according to yeast two-hybrid screening and luciferase complementation experiments, suggesting that MKK3 cascade regulates ABA signaling by modulating the core ABA signaling components. Moreover, the ABA response and ABA responsive genes of mpk7/14 were significantly higher than those of wild-type ZH11 when subjected to ABA treatment. CONCLUSION: MKK3 cascade mediates the negative feedback loop of ABA signal through the interaction between OsMPK7 and core ABA signaling components in rice.

12.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255972

RESUMO

Congenital stationary night blindness (CSNB) is a genetically heterogeneous inherited retinal disorder, caused by over 300 mutations in 17 different genes. While there are numerous fly models available for simulating ocular diseases, most are focused on mimicking retinitis pigmentosa (RP), with animal models specifically addressing CSNB limited to mammals. Here, we present a CSNB fly model associated with the mtt gene, utilizing RNA interference (RNAi) to silence the mtt gene in fly eyes (homologous to the mammalian GRM6 gene) and construct a CSNB model. Through this approach, we observed significant defects in the eye structure and function upon reducing mtt expression in fly eyes. This manifested as disruptions in the compound eye lens structure and reduced sensitivity to light responses. These results suggest a critical role for mtt in the function of fly adult eyes. Interestingly, we found that the mtt gene is not expressed in the photoreceptor neurons of adult flies but is localized to the inner lamina neurons. In summary, these results underscore the crucial involvement of mtt in fly retinal function, providing a framework for understanding the pathogenic mechanisms of CSNB and facilitating research into potential therapeutic interventions.


Assuntos
Cristalino , Retinose Pigmentar , Animais , Drosophila/genética , Retina , Retinose Pigmentar/genética
13.
Insect Sci ; 31(2): 503-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37632209

RESUMO

Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.


Assuntos
Antioxidantes , Proteínas de Drosophila , Humanos , Abelhas , Animais , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Drosophila/metabolismo , Espécies Reativas de Oxigênio , Proteína 1 Associada a ECH Semelhante a Kelch , Privação do Sono , Ácidos Graxos , Estresse Oxidativo , Oxirredutases
14.
Microbiol Res ; 280: 127571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134513

RESUMO

The nitrogen-fixing bacteroids inhabit inside legume root nodules must manage finely the utilization of P and Fe, the two most critical elements, due to their antagonistic interactions. While the balance mechanism for them remains unclear. A double SH3 domain-containing protein (dSH3) in the Bradyrhizobium diazoefficiens USDA110 was found to inhibit the alkaline phosphatase activity, thereby reducing P supply from organophosphates. The dSH3 gene is adjacent to the irr gene, which encodes the iron response repressor and regulates Fe homeostasis under Fe-limited conditions. Their transcription directions converge to a common intergenic sequence (IGS) region, forming a convergent transcription. Extending the IGS region through Tn5 transposon or pVO155 plasmid insertion significantly down-regulated expression of this gene pair, leading to a remarkable accumulation of P and an inability to grow under Fe-limited conditions. Inoculation of soybean with either of the insertion mutants resulted in N2-fixing failure. However, the IGS-deleted mutant showed no visible changes in N2-fixing efficiency on soybean compared to that inoculated with wild type. These findings reveal a novel regulative strategy in the IGS region and its flanking convergent gene pair for antagonistic utilization of P and Fe in rhizobia and coordination of N2-fixing efficiency.


Assuntos
Proteínas de Bactérias , Bradyrhizobium , Glycine max , Fixação de Nitrogênio , Proteínas de Plantas , Proteínas com Motivo de Reconhecimento de RNA , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Glycine max/microbiologia , Homeostase , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Microbiol Res ; 280: 127568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118306

RESUMO

Toxic selenite, commonly found in soil and water, can be transformed by microorganisms into selenium nanoparticles (SeNPs) as part of a detoxification process. In this study, a comprehensive investigation was conducted on the resistance and biotransformation of selenite in Sinorhizobium meliloti 1021 and the synergistic impact of SeNPs and the strain on alfalfa growth promotion was explored. Strain 1021 reduced 46% of 5 mM selenite into SeNPs within 72 h. The SeNPs, composed of proteins, lipids and polysaccharides, were primarily located outside rhizobial cells and had a tendency to aggregate. Under selenite stress, many genes participated in multidrug efflux, sulfur metabolism and redox processes were significantly upregulated. Of them, four genes, namely gmc, yedE, dsh3 and mfs, were firstly identified in strain 1021 that played crucial roles in selenite biotransformation and resistance. Biotoxic evaluations showed that selenite had toxic effects on roots and seedlings of alfalfa, while SeNPs exhibited antioxidant properties, promoted growth, and enhanced plant's tolerance to salt stress. Overall, our research provides novel insights into selenite biotransformation and resistance mechanisms in rhizobium and highlights the potential of SeNPs-rhizobium complex as biofertilizer to promote legume growth and salt tolerance.


Assuntos
Nanopartículas , Selênio , Sinorhizobium meliloti , Ácido Selenioso/metabolismo , Medicago sativa , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Biotransformação
16.
Data Brief ; 52: 109950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38125372

RESUMO

The Bacillus velezensis strain NBNZ-0060 was isolated from the bottom sediment samples of the lake Jin in Wuhan, China. This strain is an aerobic denitrifying bacterium and able to promote growth of submerged macrophytes. The 3,929,784 bp entire genome contains 3,781 coding sequences (CDS), 27 rRNAs, 85 tRNAs, 5 ncRNAs, with an average G + C content of 46.5%. The average nucleotide identity and digital DNA-DNA values between strain NBNZ-0060 and Bacillus velezensis NRRL B-41580T were 98.28% and 84.5%, respectively. The genome data have been deposited in NCBI with the accession number CP133277.1.

17.
Behav Sci (Basel) ; 13(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998681

RESUMO

Although previous studies have found a bidirectional relationship between emotional contagion and reward, there is insufficient research to prove the effect of reward on the social function of emotional contagion. To explore this issue, the current study used electroencephalography (EEG) and the interactive way in which the expresser played games to help participants obtain reward outcomes. The results demonstrated a significant correlation between changes in emotional contagion and closeness, indicating that emotional contagion has a social regulatory function. Regarding the impact of reward outcomes, the results showed that compared to the context of a loss, in the context of a win, participants' closeness toward the expresser shifted to a more intimate level, their emotional contagion changed in a more positive direction, and the activity of the late positive component (LPC) of the event-related potentials (ERPs) changed to a greater extent. Significantly, the mediation results demonstrated the effect of reward and indicated that changes in the LPC elicited while experiencing the expressers' emotion predicted the subsequent shifts in closeness through alterations in emotional contagion of the anger emotion in the winning context and the happy emotion in the loss context. This study provides empirical evidence regarding the social function of emotional contagion and proves for the first time that the reward context plays a role in it.

18.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833893

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most serious rice diseases worldwide. The early indica rice thermosensitive genic male sterile (TGMS) line HD9802S has the characteristics of stable fertility, reproducibility, a high outcrossing rate, excellent rice quality, and strong combining ability. However, this line exhibits poor blast resistance and is highly susceptible to leaf and neck blasts. In this study, backcross introduction, molecular marker-assisted selection, gene chipping, anther culture, and resistance identification in the field were used to introduce the broad-spectrum blast-resistance gene R6 into HD9802S to improve its rice blast resistance. Six induction media were prepared by varying the content of each component in the culture medium. Murashige and Skoog's medium with 3 mg/L 2,4-dichlorophenoxyacetic acid, 2 mg/L 1-naphthaleneacetic acid, and 1 mg/L kinetin and N6 medium with 800 mg/L casein hydrolysate, 600 mg/L proline, and 500 mg/L glutamine could improve the callus induction rate and have a higher green seedling rate and a lower white seedling rate. Compared to HD9802S, two doubled haploid lines containing R6 with stable fertility showed significantly enhanced resistance to rice blast and no significant difference in spikelet number per panicle, 1000-grain weight, or grain shape. Our findings highlight a rapid and effective method for improving rice blast resistance in TGMS lines.


Assuntos
Herbicidas , Oryza , Reprodutibilidade dos Testes , Cinetina , Biomarcadores , Genes de Plantas , Oryza/genética
19.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836161

RESUMO

BACKGROUND: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.

20.
Molecules ; 28(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836756

RESUMO

Metal sulfides are highly promising anode materials for sodium-ion batteries due to their high theoretical capacity and ease of designing morphology and structure. In this study, a metal-organic framework (ZIF-8/67 dodecahedron) was used as a precursor due to its large specific surface area, adjustable pore structure, morphology, composition, and multiple active sites in electrochemical reactions. The ZIF-8/67/GO was synthesized using a water bath method by introducing graphene; the dispersibility of ZIF-8/67 was improved, the conductivity increased, and the volume expansion phenomenon that occurs during the electrochemical deintercalation of sodium was prevented. Furthermore, vulcanization was carried out to obtain ZnS/CoS@C/rGO composite materials, which were tested for their electrochemical properties. The results showed that the ZnS/CoS@C/rGO composite was successfully synthesized, with dodecahedrons dispersed in large graphene layers. It maintained a capacity of 414.8 mAh g-1 after cycling at a current density of 200 mA g-1 for 70 times, exhibiting stable rate performance with a reversible capacity of 308.0 mAh g-1 at a high current of 2 A g-1. The excellent rate performance of the composite is attributed to its partial pseudocapacitive contribution. The calculation of the diffusion coefficient of Na+ indicates that the rapid sodium ion migration rate of this composite material is also one of the reasons for its excellent performance. This study highlights the broad application prospects of metal-organic framework-derived metal sulfides as anode materials for sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...