Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Stem Cell Res Ther ; 18(2): 163-173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35466881

RESUMO

A common surgical disease, intervertebral disc degeneration (IVDD), is increasing at an alarming rate in younger individuals. Repairing damaged intervertebral discs (IVDs) and promoting IVD tissue regeneration at the molecular level are important research goals.Exosomes are extracellular vesicles (EVs) secreted by cells and can be derived from most body fluids. Mesenchymal stem cell-derived exosomes (MSC-exos) have characteristics similar to those of the parental MSCs. These EVs can shuttle various macromolecular substances, such as proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs) and regulate the activity of recipient cells through intercellular communication. Reducing inflammation and apoptosis can significantly promote IVD regeneration to facilitate the repair of the IVD. Compared with MSCs, exosomes are more convenient to store and transport, and the use of exosomes can prevent the risk of rejection with cell transplantation. Furthermore, MSC-exo-mediated treatment may be safer and more effective than MSC transplantation. In this review, we summarize the use of bone marrow mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AMSCs), nucleus pulposus mesenchymal stem cells (NPMSCs), and stem cells from other sources for tissue engineering and use in IVDD. Here, we aim to describe the role of exosomes in inhibiting IVDD, their potential therapeutic effects, the results of the most recent research, and their clinical application prospects to provide an overview for researchers seeking to explore new treatment strategies and improve the efficacy of IVDD treatment.


Assuntos
Exossomos , Degeneração do Disco Intervertebral , Disco Intervertebral , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/terapia , Exossomos/metabolismo , Disco Intervertebral/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo
2.
J Mater Chem B ; 10(30): 5696-5722, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852563

RESUMO

As our research on the physiopathology of intervertebral disc degeneration (IVD degeneration, IVDD) has advanced and tissue engineering has rapidly evolved, cell-, biomolecule- and nucleic acid-based hydrogel grafting strategies have been widely investigated for their ability to overcome the harsh microenvironment of IVDD. However, such single delivery systems suffer from excessive external dimensions, difficult performance control, the need for surgical implantation, and difficulty in eliminating degradation products. Stimulus-responsive composite hydrogels have good biocompatibility and controllable mechanical properties and can undergo solution-gel phase transition under certain conditions. Their combination with ready-to-use particles to form a multiscale delivery system may be a breakthrough for regenerative IVD strategies. In this paper, we focus on summarizing the progress of research on the stimulus response mechanisms of regenerative IVD-related biomaterials and their design as macro-, micro- and nanoparticles. Finally, we discuss multi-scale delivery systems as bioinks for bio-3D printing technology for customizing personalized artificial IVDs, which promises to take IVD regenerative strategies to new heights.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Hidrogéis , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Regeneração , Engenharia Tecidual/métodos
3.
Asian J Pharm Sci ; 17(1): 102-119, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35261647

RESUMO

This study focused on the encapsulation of vancomycin (VAN) into liposomes coated with a red blood cell membrane with a targeting ligand, daptomycin-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, formed by conjugation of DAPT and N-hydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine. This formulation is capable of providing controlled and targeted drug delivery to the bacterial cytoplasm. We performed MALDI-TOF, NMR and FTIR analyses to confirm the conjugation of the targeting ligand via the formation of amide bonds. Approximately 45% of VAN could be loaded into the aqueous cores, whereas 90% DAPT was detected using UV-vis spectrophotometry. In comparison to free drugs, the formulations controlled the release of drugs for > 72 h. Additionally, as demonstrated using CLSM and flow cytometry, the resulting formulation was capable of evading detection by macrophage cells. In comparison to free drugs, red blood cell membrane-DAPT-VAN liposomes, DAPT liposomes, and VAN liposomes reduced the MIC and significantly increased bacterial permeability, resulting in > 80% bacterial death within 4 h. Cytotoxicity tests were performed in vitro and in vivo on mammalian cells, in addition to hemolytic activity tests in human erythrocytes, wherein drugs loaded into the liposomes and RBCDVL exhibited low toxicity. Thus, the findings of this study provide insight about a dual antibiotic targeting strategy that utilizes liposomes and red blood cell membranes to deliver targeted drugs against MRSA.

4.
Mol Biol Rep ; 49(4): 3055-3064, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032258

RESUMO

BACKGROUND: Although osteosarcoma (OS) is the most common malignant bone tumor, the biological mechanism underlying its incidence and improvement remains unclear. This study investigated early diagnosis and treatment objectives using bioinformatics strategies and performed experimental verification. METHODS AND RESULTS: The top 10 OS hub genes-CCNA2, CCNB1, AURKA, TRIP13, RFC4, DLGAP5, NDC80, CDC20, CDK1, and KIF20A-were screened using bioinformatics methods. TRIP13 was chosen for validation after reviewing literature. TRIP13 was shown to be substantially expressed in OS tissues and cells, according to Western blotting (WB) and quantitative real-time polymerase chain reaction data. Subsequently, TRIP13 knockdown enhanced apoptosis and decreased proliferation, migration, and invasion in U2OS cells, as validated by the cell counting kit-8 test, Hoechst 33,258 staining, wound healing assay, and WB. In addition, the levels of p-PI3K/PI3K and p-AKT/AKT in U2OS cells markedly decreased after TRIP13 knockdown. Culturing U2OS cells, in which TRIP13 expression was downregulated, in a medium supplemented with a PI3K/AKT inhibitor further reduced their proliferation, migration, and invasion and increased their apoptosis. CONCLUSIONS: TRIP13 knockdown reduced U2OS cell proliferation, migration, and invasion via a possible mechanism involving the PI3K/AKT signaling pathway.


Assuntos
Neoplasias Ósseas , Proteínas de Ciclo Celular , Osteossarcoma , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Apoptose/genética , Neoplasias Ósseas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Osteossarcoma/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
5.
Curr Gene Ther ; 22(4): 291-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636308

RESUMO

Bone Marrow Mesenchymal Stem Cells (BMSCs), multidirectional cells with self-renewal capacity, can differentiate into many cell types and play essential roles in tissue healing and regenerative medicine. Cell experiments and in vivo research in animal models have shown that BMSCs can repair degenerative discs by promoting cell proliferation and expressing Extracellular Matrix (ECM) components, such as type II collagen and protein-polysaccharides. Delaying or reversing the Intervertebral Disc Degeneration (IDD) process at an etiological level may be an effective strategy. However, despite increasingly in-depth research, some deficiencies in cell transplantation timing and strategy remain, preventing the clinical application of cell transplantation. Exosomes exhibit the characteristics of the mother cells from which they are secreted and can inhibit Nucleus Pulposus Cell (NPC) apoptosis and delay IDD through intercellular communication. Furthermore, the use of exosomes effectively avoids problems associated with cell transplantation, such as immune rejection. This manuscript introduces almost all of the BMSCs and exosomes derived from BMSCs (BMSCs-Exos) described in the IDD literature. Many challenges regarding the use of cell transplantation and therapeutic exosome intervention for IDD remain to be overcome.


Assuntos
Exossomos , Degeneração do Disco Intervertebral , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Exossomos/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/terapia , Células-Tronco Mesenquimais/metabolismo
7.
Brain Res Bull ; 176: 85-92, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418462

RESUMO

OBJECTIVES: Postmenopausal osteoporosis (PMO) and osteoporotic fracture seriously impair human health in developed countries. The present study aims to explore whether sensory nerves, calcitonin gene-related peptide (CGRP), and brain-derived serotonin are related to bone loss in ovariectomized (OVX) rats. METHODS: Female rats were grouped into the ovariectomized (OVX) and sham surgery (SHAM) groups. Immunocytochemistry, western blotting, and qPCR were performed to detect CGRP expression in the femurs. The expression levels of serotonin and CGRP in the spinal cord and brainstem were estimated using western blotting, immunofluorescence, and qPCR. ELISA was used to evaluate the serum biomarkers of bone formation and resorption. Bone mineral density was measured using dual-energy X-ray (DXA) analysis. Femur microstructure was imaged by Micro CT. P values less than 0.05 were considered statistically significant. RESULTS: ELISA showed that serum bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP), ß-crosslaps, and ß-ctx were increased in the OVX group. In the OVX group, in vivo bone mineral density, trabecular bone mineral density, bone volume fraction (BV/TV), and trabecular number (Tb. N) were significantly decreased, while trabecular spacing (Tb. Sp) and trabecular bone pattern factor (Tb. Pf) were markedly increased. In the OVX group, the expression levels of CGRP of the femur were significantly downregulated. In contrast, CGRP and serotonin expression was increased in the spinal cord of the OVX group. Serotonin expression was increased in the brainstem, brainstem nucleus raphe magnus (RMG), and nucleus raphe dorsalis (DRN). CONCLUSION: Our results indicated that the activation of osteoclast triggered the release of CGRP from nociceptive sensory nerve fibers and transmitted this painful stimulus to the dorsal horn of the spinal cord to release increased CGRP. The descending serotonergic inhibitory system was activated by increased CGRP levels of the spinal cord and promoted serotonin release in the brainstem RMG, DRN, and the spinal cord, contributing to the decreased CGRP level in bone tissue, which revealed a novel mechanism of bone loss in PMO.


Assuntos
Densidade Óssea/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteoporose/metabolismo , Serotonina/metabolismo , Absorciometria de Fóton , Fosfatase Alcalina/sangue , Animais , Osso e Ossos/diagnóstico por imagem , Tronco Encefálico/metabolismo , Feminino , Osteoporose/diagnóstico por imagem , Ovariectomia , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Fosfatase Ácida Resistente a Tartarato/sangue
8.
Int J Med Sci ; 18(13): 2799-2813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220308

RESUMO

Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.


Assuntos
Degeneração do Disco Intervertebral/tratamento farmacológico , Disco Intervertebral/patologia , Dor Lombar/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Degeneração do Disco Intervertebral/complicações , Dor Lombar/etiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/métodos , Receptores de Morte Celular/antagonistas & inibidores , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Sci Rep ; 11(1): 11165, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045512

RESUMO

The spindle and kinetochore-associated protein complex (Ska) is an essential component in chromosome segregation. It comprises three proteins (Ska1, Ska2, and Ska3) with theorized roles in chromosomal instability and tumor development, and its overexpression has been widely reported in a variety of tumors. However, the prognostic significance and immune infiltration of Ska proteins in hepatocellular carcinoma (HCC) are not completely understood. The bioinformatics tools Oncomine, UALCAN, gene expression profiling interactive analysis 2 (GEPIA2), cBioPortal, GeneMANIA, Metascape, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of the Ska protein complex in HCC patients. We found that the mRNA expression of the Ska complex was markedly upregulated in HCC. High expression of the Ska complex is closely correlated with tumor stage, patient race, tumor grade, and TP53 mutation status. In addition, high expression of the Ska complex was significantly correlated with poor disease-free survival, while the high expression levels of Ska1 and Ska3 were associated with shorter overall survival. The biological functions of the Ska complex in HCC primarily involve the amplification of signals from kinetochores, the mitotic spindle, and (via a MAD2 invasive signal) unattached kinetochores. Furthermore, the expression of the complex was positively correlated with tumor-infiltrating cells. These results may provide new insights into the development of immunotherapeutic targets and prognostic biomarkers for HCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cinetocoros/metabolismo , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Prognóstico , Fuso Acromático , Taxa de Sobrevida
10.
Eur J Pharm Biopharm ; 165: 84-105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33974973

RESUMO

Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.


Assuntos
Antibacterianos/administração & dosagem , Bacteriemia/tratamento farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/administração & dosagem , Animais , Antibacterianos/farmacocinética , Bacteriemia/microbiologia , Disponibilidade Biológica , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Carga Global da Doença , Humanos , Lipossomos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Distribuição Tecidual , Resultado do Tratamento , Vancomicina/farmacocinética
11.
ACS Omega ; 4(4): 7492-7497, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459844

RESUMO

Lanthanide(III) ion (Ln(III)) sensing has become a major research area owing to its intriguing prospect in clinic, biology, and environmental studies. However, the existing methods have limitations like requirement of expensive instrumentation, long analytical times, and sample pretreatments, revealing the necessity of other methods. In this work, by using N-methyl-4-pyridinium tetrazolate (mptz) zwitterion as an electron acceptor, we obtained several new Ln(III) compounds with electron-transfer (ET) photochromic properties: [Ln(NO3)3(H2O)4]·mptz [Ln = Sm (1), Eu (2), Gd (3), La (4), Ce (5), Pr (6), Nd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14)]. Notably, different Ln(III) ions in these compounds can be visually identified by their different photoinduced color changes related to the ET process. This work may not only contribute to the more understanding of the structure-photosensitivity relationships of pyridinium-based compounds, but also provide a new approach for Ln(III) ion sensing.

12.
J Control Release ; 311-312: 50-64, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31465827

RESUMO

The current conventional injectable vaccines face several drawbacks such as inconvenience and ineffectiveness in mucosal immunization. Therefore, the current development of effective oral vaccines is vital to enable the generation of dual systemic and mucosal immunity. In the present study, we examine the potential of pH-responsive bacterial nanocellulose/polyacrylic acid (BNC/PAA) hydrogel microparticles (MPs) as an oral vaccine carrier. In-vitro entrapment efficiency and release study of Ovalbumin (Ova) demonstrated that as high as 72% of Ova were entrapped in the hydrogel, and the release of loaded Ova was pH-dependent. The released Ova remained structurally conserved as evident by Western blot and circular dichroism. Hydrogel MPs reduced the TEER measurement of HT29MTX/Caco2/Raji B triple co-culture monolayer by reversibly opening the tight junctions (TJs) as shown in the TEM images. The ligated ileal loop assay revealed that hydrogel MPs could facilitate the penetration of FITC-Ova into the Peyer's patches in small intestine. Ova and cholera toxin B (CTB) were utilized in in-vivo oral immunization as model antigen and mucosal adjuvant. The in-vivo immunization revealed mice orally administered with Ova and CTB-loaded hydrogel MPs generated significantly higher level of serum anti-Ova IgG and mucosal anti-Ova IgA in the intestinal washes, compared to intramuscular administrated Ova. These results conclude that BNC/PAA hydrogel MPs is a potential oral vaccine carrier for effective oral immunization.


Assuntos
Resinas Acrílicas/administração & dosagem , Antígenos/administração & dosagem , Celulose/administração & dosagem , Portadores de Fármacos/administração & dosagem , Hidrogéis/administração & dosagem , Imunização/métodos , Ovalbumina/administração & dosagem , Administração Oral , Animais , Antígenos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Ovalbumina/química , Junções Íntimas/metabolismo
13.
Mol Pharm ; 16(9): 3853-3872, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398038

RESUMO

The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.


Assuntos
Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Hepatite B/prevenção & controle , Hidrogéis/administração & dosagem , Imunogenicidade da Vacina , Vacinação/métodos , Administração Oral , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Antígenos de Superfície da Hepatite B/química , Vacinas contra Hepatite B/farmacologia , Hidrogéis/química , Concentração de Íons de Hidrogênio , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ratos
14.
J Biomed Mater Res B Appl Biomater ; 107(6): 2140-2151, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30758129

RESUMO

Graphene oxide (GO) is a potential material for wound dressing due to its excellent biocompatibility and mechanical properties. This study evaluated the effects of GO concentration on the synthesis of bacterial nanocellulose (BNC)-grafted poly(acrylic acid) (AA)-graphene oxide (BNC/P(AA)/GO) composite hydrogel and its potential as wound dressing. Hydrogels were successfully synthesized via electron-beam irradiation. The hydrogels were characterized by their mechanical properties, bioadhesiveness, water vapor transmission rates (WVTRs), water retention abilities, water absorptivity, and biocompatibility. Fourier transform infrared analysis showed the successful incorporation of GO into hydrogel. Thickness, gel fraction determination and morphological study revealed that increased GO concentration in hydrogels leads to reduced crosslink density and larger pore size, resulting in increased WVTR. Thus, highest swelling ratio was found in hydrogel with higher amount of GO (0.09 wt %). The mechanical properties of the composite hydrogel were maintained, while its hardness and bioadhesion were reduced with higher GO concentration in the hydrogel, affirming the durable and easy removable properties of a wound dressing. Human dermal fibroblast cell attachment and proliferation studies showed that biocompatibility of hydrogel was improved with the inclusion of GO in the hydrogel. Therefore, BNC/P(AA)/GO composite hydrogel has a potential application as perdurable wound dressing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2140-2151, 2019.


Assuntos
Resinas Acrílicas/química , Bactérias/química , Bandagens , Celulose/química , Grafite/química , Hidrogéis/química , Nanocompostos/química , Animais , Adesão Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Teste de Materiais , Ratos
15.
Chemistry ; 23(31): 7414-7417, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28425125

RESUMO

N,N'-Disubstituted bipyridinium (viologen) and N-monosubstituted bipyridinium compounds are well known for their electron-transfer (ET) photochromic behavior. Their modification has exclusively focused on the N-substituents to date. For the first time, we have studied the photochromic behavior when one pyridyl ring of the bipyridinium is substituted with a multifunctional azole group, and have found that two new coordination compounds based on N-methyl-4-pyridinium tetrazolate (mptz) zwitterion, [Zn(mptz)2 Br2 ] (1) and [Cd3 (mptz)2 Cl6 ]n ⋅4n H2 O (2), exhibit typical ET photochromic behavior owing to photoinduced ET from halogen anion to the mptz ligand. This work demonstrates a new simple, neutral photoactive molecule with electron-accepting ability, which may act as a photoactive component for materials with potential photoswitching and photocatalysis applications.

16.
Zhongguo Zhong Yao Za Zhi ; 41(21): 4000-4005, 2016 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-28929688

RESUMO

The apoptosis of mono-hepatocellular induced by the active ingredients of the Zanthoxyli Radix was investigated using laser Raman spectroscopy. Hepatoma cells (BEL-7404) were treated with 10 mg•L⁻¹ nitidine chloride and 3 g•L⁻¹ the extracts of Zanthoxyli Radix, respectively, then were divided into two parts, one for fluorescence staining, the other for determination of Raman spectroscopy. The acquired spectra were then processed by background elimination, smoothing, and normalization. Fluorescence staining results showed that the nucleuses from untreated group were uniformly stained, while those from the group treated for 48 hours were densely stained and broken. The spectra results revealed that the intensity of peaks associated with nucleic acid and protein decreased after the cells were incubated with the extracts of Zanthoxyli Radix for 12, 24, 36 and 48 hours. The intensity of peaks at 785,1 002,1 175,1 660 cm⁻¹ was decreased with the time of the cells were incubated by the extracts of Zanthoxyli Radix. The results indicated that the extracts of Zanthoxyli Radix could induce the apoptosis of hepatoma cells and reduce the amount of nucleic acid and protein in the cells. There is a certain relevance between the drug treatment time and the efficacy. The above results suggest that Raman spectra can provide abundant information about the changes in biological macromolecules within the cells after incubated by the extracts of Zanthoxyli Radix and serve as an effective method for the real time measurement of apoptosis.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/patologia , Zanthoxylum/química , Linhagem Celular Tumoral , Humanos , Raízes de Plantas/química , Análise Espectral Raman
17.
Inorg Chem ; 53(24): 13212-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25423181

RESUMO

Three novel complexes, namely, [Co(III)(3,5-DBCat)(3,5-DBSq)(bpe)]·2CH3CN·2H2O (1·S), [Co(III)(3,5-DBCat)(3,5-DBSq)(azpy)]·2CH3CN·2H2O (2·S), and [Co(II)(3,5-DBSq)2(bpb)][Co(III)(3,5-DBCat)(3,5-DBSq)(bpb)]0.5·2CH3CN·2H2O (3·S), were synthesized and characterized by valence tautomeric (VT) X-ray diffraction and magnetic measurements [where 3,5-DBCatH2 = 3,5-di-tert-butyl-catechol, 3,5-DBSqH = 3,5-di-tert-butyl-semiquinone, bpe = trans-bis(4-pyridyl)ethylene, azpy = trans-4,4'-azopyridine, and bpb = 1,4-bis(4-pyridyl)benzene]. The three complexes have similar one-dimensional chain structure building from bidentate-bridging pyridine ligands and planar 3,5-DBCat/3,5-DBSq-fixed Co(II/III) entities. Complexes 1·S and 2·S could retain the crystallinity during desolvation, and the crystal structures of 1 and 2 were therefore able to be determined. Only when 1·S and 2·S desolvated above 310 K did the magnetic susceptibilities × temperatures values of the two complexes rise sharply, and then thermally induced complete, one-step VT transitions for 1 and 2 were available and repeatable. Complex 3·S showed an incomplete, one-step VT transition independent of solvent molecules. Among these complexes, only 1 was sensitive to photoexcitation at low temperature, its photoinduced metastable state relaxed with temperature-independent behavior at low temperature range (5-10 K) and with thermally assisted behavior at high temperature range (above 20 K), respectively.

18.
Inorg Chem ; 53(10): 5246-52, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24779402

RESUMO

In our previous work ( Chen , X.-Y. ; Chem. Commun. 2013 , 49 , 10977 - 10979 ), we have reported the crystal structure and spin-crossover properties of a compound [Fe(NCS)2(tppm)]·S [1·S, tppm = 4,4',4″,4‴-tetrakis(4-pyridylethen-2-yl)tetraphenylmethane, S = 5CH3OH·2CH2Cl2]. Here, its analogues [Fe(X)2(tppm)]·S [X = NCSe(-), NCBH3(-), and N(CN)2(-) for compounds 2·S, 3·S, and 4·S, respectively] have been synthesized and characterized by variable-temperature X-ray diffraction and magnetic measurements. The crystal structure analyses of 2·S and 3·S reveal that both compounds possess the same topologic framework (PtS-type) building from the tetrahedral ligand tppm and planar unit FeX2; the framework is two-fold self-interpenetrated to achieve one-dimensional open channels occupied by solvent molecules. Powder X-ray diffraction study indicates the same crystal structure for 4. The average values of Fe-N distances observed, respectively, at 100, 155, and 220 K for the Fe1/Fe2 centers are 1.969/2.011, 1.970/2.052, and 2.098/2.136 Å for 2·S, whereas those at 110, 175, and 220 K are 1.972/2.013, 1.974/2.056, and 2.100/2.150 Å for 3·S, indicating the presence of a two-step spin crossover in both compounds. Temperature-dependent magnetic susceptibilities (χMT) confirm the two-step spin-crossover behavior at 124 and 200 K in 2·S, 151 and 225 K in 3·S, and 51 and 126 K in 4·S, respectively. The frameworks of 2-4 are reproducible upon solvent exchange and thereafter undergo solvent-dependent spin-crossover behaviors.

19.
Chem Commun (Camb) ; 49(93): 10977-9, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24132186

RESUMO

A 3D 2-fold interpenetrated porous coordination polymer, [Fe(NCS)2(tppm)]·5CH3OH·2CH2Cl2 (·sol, tppm = 4,4',4'',4'''-tetrakis(4-pyridylethen-2-yl)tetraphenylmethane), was synthesized, which showed temperature, light and solvent-induced spin-crossover behaviours.

20.
Dalton Trans ; 41(33): 10035-42, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22623031

RESUMO

Three α-Keggin heteropolymolybdates with the formula [(C(5)H(4)NH)COOH](3)[PMo(12)O(40)] 1, {[Sm(H(2)O)(4)(pdc)](3)}{[Sm(H(2)O)(3)(pdc)]}[SiMo(12)O(40)]·3H(2)O 2 and {[La(H(2)O)(4)(pdc)](4)}[PMo(12)O(40)]F 3 (H(2)pdc = pyridine-2,6-dicarboxylate), have been synthesized under hydrothermal condition and characterized by single crystal X-ray diffraction analyses, elemental analyses, inductively coupled plasma atomic emission spectroscopy (ICP-AES), IR, thermal gravimetric analyses, thermal infrared spectrum analyses and powder X-ray diffraction (PXRD) analyses. Single crystal X-ray diffraction indicates all three compounds comprise ball-shaped Keggin type [XMo(12)O(40)](n-) polyoxometalates (POMs) (n = 3, X = P; n = 4, X = Si, respectively) with different types of carboxylic ligands derived from H(2)pdc, and these cluster anions are isostructural. In order to explore structural characteristics, Rhodamine B photocatalytic (RhB) degradation and two-dimensional infrared correlation spectroscopy (2D-IR COS) tests, are investigated for 1, 2 and 3. In RhB degradation, all compounds show good photocatalytic activity. For 1, the activity mainly comes from POMs. While in 2 and 3, POMs' photocatalytic activity is enhanced by the Ln(iii)-pdc metal-organic frameworks. Structural properties like POM's stability and magnetic sensitivity are discussed by 2D-IR COS under thermal/magnetic perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...