Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Angew Chem Int Ed Engl ; : e202400823, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735839

RESUMO

Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.

2.
J Am Chem Soc ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742424

RESUMO

High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.

3.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38625041

RESUMO

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

4.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675637

RESUMO

The detection of volatile amines is necessary due to the serious toxicity hazards they pose to human skin, respiratory systems, and nervous systems. However, traditional amines detection methods require bulky equipment, high costs, and complex measurements. Herein, we report a new simple, rapid, convenient, and visual method for the detection of volatile amines based on the gas-solid reactions of tetrachloro-p-benzoquinone (TCBQ) and volatile amines. The gas-solid reactions of TCBQ with a variety of volatile amines showed a visually distinct color in a time-dependent manner. Moreover, TCBQ can be easily fabricated into simple and flexible rapid test strips for detecting and distinguishing n-propylamine from other volatile amines, including ethylamine, n-butyamine, n-pentamine, n-butyamine and dimethylamine, in less than 3 s without any equipment assistance.

5.
Org Lett ; 26(18): 3883-3888, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38683041

RESUMO

A (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-mediated difunctionalization of alkenes with tert-butyl nitrite, P4S10, and alcohols has been developed for the synthesis of ß-oximino phosphorodithioates. The reaction goes through a radical pathway with the successive installation of phosphorodithioate and an oxime group. This four-component protocol offers a practical approach to constructing a variety of ß-oximino phosphorodithioates in moderate to good yields with favorable functional group tolerance.

6.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677079

RESUMO

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Assuntos
Algoritmos , Contrapulsação , Ventrículos do Coração , Hemodinâmica , Modelos Cardiovasculares , Humanos , Contrapulsação/métodos , Débito Cardíaco , Artérias/fisiologia , Pressão Sanguínea , Simulação por Computador , Aorta/fisiologia , Redes Neurais de Computação
7.
Chem Commun (Camb) ; 60(27): 3669-3672, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456336

RESUMO

It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.

8.
J Colloid Interface Sci ; 665: 693-701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552584

RESUMO

Metal-Organic Framework (MOF) membranes act as selective layers have offered unprecedented opportunities for energy-efficient and cost-effective gas separation. Searching for the green and sustainable synthesis method of dense MOF membrane has received huge attention in both academia and industry. In this work, we demonstrate an in situ electrochemical potential-induced synthesis strategy to aqueously fabricate Metal Azolate Framework-4 (MAF-4) membranes on polypropylene (PP) support. The constant potential can induce the heterogeneous nucleation and growth of MAF-4, resulting an ultrathin membrane with the thickness of only 390 nm. This high-quality membrane exhibits a high H2/CO2 separation performance with the H2 permeance as high as 1565.75 GPU and selectivity of 11.6. The deployment of this environment friendly one-step fabrication method under mild reaction conditions, such as low-cost polymer substrate, water instead of organic solvent, room temperature and ambient pressure shows great promise for the scale-up of MOF membranes.

9.
Chemistry ; 30(26): e202304334, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38388776

RESUMO

Sensing of benzene vapor is a hot spot due to the volatile drastic carcinogen even at trace concentration. However, achieving convenient and rapid detection is still a challenge. As a sort of functional porous material, metal-organic frameworks (MOFs) have been developed as detection sensors by adsorbing benzene vapor and converting it into other signals (fluorescence intensity/wavelength, chemiresistive, weight or color, etc.). Supramolecular interaction between benzene molecules and the host framework, aperture size/shape and structural flexibility are influential factors in the performance of MOF-based sensors. Therefore, enhancing the host-guest interactions between the host framework and benzene molecules, or regulating the diffusion rate of benzene molecules by changing the aperture size/shape and flexibility of the host framework to enhance the detection signal are effective strategies for constructing MOF-based sensors. This concept highlights several types of MOF-based sensors for the detection of benzene vapor.

10.
J Am Chem Soc ; 146(1): 1144-1152, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164902

RESUMO

It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.

11.
Hepatol Int ; 18(1): 4-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864725

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Artéria Hepática/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluoruracila/uso terapêutico , Infusões Intra-Arteriais
12.
J Colloid Interface Sci ; 656: 538-544, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007945

RESUMO

In the petrochemical industry, obtaining polymer-grade ethylene from complex light-hydrocarbon mixtures by one-step separation is important and challenging. Here, we successfully prepared the Metal-Azolate Framework 7 (MAF-7) with pore chemistry and geometry control to realize the one-step separation of ethylene from cracking gas with up to quinary gas mixtures (propane/propylene/ethane/ethylene/acetylene). Based on the tailor-made pore environment, MAF-7 exhibited better selective adsorption of propane, propylene, ethane and acetylene than ethylene, and the adsorption ratios of ethane/ethylene and propylene/ethylene are as high as 1.49 and 2.81, respectively. The pore geometry design of MAF-7 leads to the unique weak binding affinity and adsorption site for ethylene molecules, which is clearly proved by Grand Canonical Monte Carlo theoretical calculations. The breakthrough experiments show that ethylene can be directly obtained from binary, ternary, and quinary gas mixtures. These comprehensive properties show that MAF-7 is expected to achieve one-step purification of ethylene in complex light hydrocarbon mixtures.

13.
Electrophoresis ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909658

RESUMO

Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.

14.
J Am Chem Soc ; 145(49): 26783-26790, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014883

RESUMO

The electroreduction of CO2 into value-added liquid fuels holds great promise for addressing global environmental and energy challenges. However, achieving highly selective yielding of multi-carbon oxygenates through the electrochemical CO2 reduction reaction (eCO2RR) is a formidable task, primarily due to the sluggish asymmetric C-C coupling reaction. In this study, a novel metal-organic framework (CuSn-HAB) with unprecedented heterometallic Sn···Cu dual sites (namely, a pair of SnN2O2 and CuN4 sites bridged by µ-N atoms) was designed to overcome this limitation. CuSn-HAB demonstrated an impressive Faradic efficiency (FE) of 56(2)% for eCO2RR to alcohols, achieving a current density of 68 mA cm-2 at a low potential of -0.57 V (vs RHE). Notably, no significant degradation was observed over a continuous 35 h operation at the specified current density. Mechanistic investigations revealed that, in comparison to the copper site, the SnN2O2 site exhibits a higher affinity for oxygen atoms. This enhanced affinity plays a pivotal role in facilitating the generation of the key intermediate *OCH2. Consequently, compared to homometallic Cu···Cu dual sites (generally yielding ethylene product), the heterometallic dual sites were proved to be more thermodynamically favorable for the asymmetric C-C coupling between *CO and *OCH2, leading to the formation of the key intermediate *CO-*OCH2, which is favorable for yielding ethanol product.

15.
Transl Cancer Res ; 12(10): 2461-2476, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969393

RESUMO

Background: Although the incidence of intrahepatic cholangiocarcinoma (CHOL) is low, the prognosis is very poor. The expression level of interleukin 23 receptor (IL23R) is linked to the occurrence and development of cancers. This study aimed to identify the role of IL23R in CHOL using bioinformatics tools and experimental validation. Methods: Circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database, and R software was used for data analysis and visualization. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to conduct functional enrichment analysis, which was verified with gene set enrichment analysis software. Clinical data were obtained from The Cancer Genome Atlas (TCGA), and survival analyses were performed using the DriverDBv3 database and the Gene Expression Profiling Interactive Analysis website. The TIMER2.0 database provided us for immune cell infiltration analysis results of IL23R. Real-time quantitative polymerase chain reaction (RT-qPCR) was used for IL23R expression verification. Results: Differentially expressed (DE) mRNAs were enriched in phosphoinositide 3-kinase-serine/threonine kinase signaling pathway, immune-related tumor microenvironment (TME), and amino acid metabolism, etc. In addition, expression of IL23R was associated with immune infiltration-related cells. Furthermore, a circRNA-miRNA-IL23R network and a IL23R protein-protein interaction network were established. Most importantly, IL23R, as a prognostic gene, was found to have a low expression in CHOL. Conclusions: A circRNA-miRNA-IL23R network was identified, and it was found that IL23R may be a prognostic and immune-related biomarker in CHOL, which is worthy of further exploration.

16.
Angew Chem Int Ed Engl ; 62(52): e202311265, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37782029

RESUMO

Integration of CO2 capture capability from simulated flue gas and electrochemical CO2 reduction reaction (eCO2 RR) active sites into a catalyst is a promising cost-effective strategy for carbon neutrality, but is of great difficulty. Herein, combining the mixed gas breakthrough experiments and eCO2 RR tests, we showed that an Ag12 cluster-based metal-organic framework (1-NH2 , aka Ag12 bpy-NH2 ), simultaneously possessing CO2 capture sites as "CO2 relays" and eCO2 RR active sites, can not only utilize its micropores to efficiently capture CO2 from simulated flue gas (CO2 : N2 =15 : 85, at 298 K), but also catalyze eCO2 RR of the adsorbed CO2 into CO with an ultra-high CO2 conversion of 60 %. More importantly, its eCO2 RR performance (a Faradaic efficiency (CO) of 96 % with a commercial current density of 120 mA cm-2 at a very low cell voltage of -2.3 V for 300 hours and the full-cell energy conversion efficiency of 56 %) under simulated flue gas atmosphere is close to that under 100 % CO2 atmosphere, and higher than those of all reported catalysts at higher potentials under 100 % CO2 atmosphere. This work bridges the gap between CO2 enrichment/capture and eCO2 RR.

17.
Biosens Bioelectron ; 242: 115703, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820556

RESUMO

We demonstrated a temperature-compensated optofluidic DNA biosensor available for microfluidic chip. The optofluidic sensor was composed of an interferometer and a fiber Bragg grating (FBG) by femtosecond laser direct writing micro/nano processing technology. The sensing arm of the interferometer was suspended on the inner wall of the microchannel and could directly interact with the microfluid. With the immobilization of the single stranded probe DNA (pDNA), this optofluidic biosensor could achieve specific detection of single stranded complementary DNA (scDNA). The experimental results indicated that a linear response within 50 nM and the detection limit of 1.87 nM were achieved. In addition, the optofluidic biosensor could simultaneously monitor temperature to avoid temperature fluctuations interfering with the DNA hybridization detection process. And, the optofluidic detection channel could achieve fast sample replacement within 10 s at a flow rate of 2 µL/min and sample consumption only required nanoliters. This optofluidic DNA biosensor had the advantages of label-free, good specificity, dual parameter detection, low sample consumption, fast response, and easy repeatable preparation, which was of great significance for the field of DNA hybridization research and solving the temperature sensitivity problem of biosensors and had good prospects in biological analysis.


Assuntos
Técnicas Biossensoriais , Microfluídica , Temperatura , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica , DNA/genética , DNA/análise , DNA de Cadeia Simples
18.
J Am Chem Soc ; 145(39): 21672-21678, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37732812

RESUMO

It is challenging and important to achieve high performance for an electrochemical CO2 reduction reaction (eCO2RR) to yield CH4 under neutral conditions. So far, most of the reported active sites for eCO2RR to yield CH4 are single metal sites; the performances are far below the commercial requirements. Herein, we reported a nanosheet metal-organic layer in single-layer, namely, [Cu2(obpy)2] (Cuobpy-SL, Hobpy = 1H-[2,2']bipyridinyl-6-one), possessing dicopper(I) sites for eCO2RR to yield CH4 in a neutral aqueous solution. Detailed examination of Cuobpy-SL revealed high performance for CH4 production with a faradic efficiency of 82(1)% and a current density of ∼90 mA cm-2 at -1.4 V vs. reversible hydrogen electrode (RHE). No obvious degradation was observed over 100 h of continuous operation, representing a remarkable performance to date. Mechanism studies showed that compared with the conventional single-copper sites and completely exposed dicopper(I) sites, the dicopper(I) sites in the confined space formed by the molecular stacking have a strong affinity to key C1 intermediates such as *CO, *CHO, and *CH2O to facilitate the CH4 production, yet inhibiting C-C coupling.

19.
Angew Chem Int Ed Engl ; 62(42): e202308195, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37656139

RESUMO

Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2 RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im) with imidazole groups as a new electrocatalyst for eCO2 RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm-2 . No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm-2 . The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.

20.
J Am Chem Soc ; 145(31): 16978-16982, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526259

RESUMO

The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal-organic framework, namely NU-1000-Sn, by a "ship-in-a-bottle" strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm-2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm-2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...