Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814147

RESUMO

A deselenylative protocol that enables the construction of the C-C and C-N bonds has been disclosed. By using acyl chloride/AgOTf as an efficient acylation reagent, diarylselenides smoothly undergo deselenylative acylation to produce a series of aroyl compounds. In addition, deselenylative nitration can be enabled by a mild nitration reagent consisting of TsCl and AgNO3, furnishing a diverse array of nitroaromatic compounds.

2.
ACS Omega ; 9(3): 3317-3323, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284005

RESUMO

A novel synthetic approach to preparing alkenyl nitriles via the olefination of aldehydes with diazoacetonitrile catalyzed by iron(II) phthalocyanine in the presence of PPh3 has been developed. A broad variety of aldehydes are efficiently transformed into the corresponding products with the high yields of 75%-97%. And it is also suitable for its gram-scale preparation. The suggested mechanism involves the transformation of the phosphazine to ylide by iron(II) phthalocyanine.

3.
Arch Microbiol ; 205(4): 148, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991151

RESUMO

A novel actinomycete, designated strain S1-112 T, was isolated from a mangrove soil sample from Hainan, China, and characterized using a polyphasic approach. Strain S1-112 T showed the highest similarity of the 16S rRNA gene to Streptomonospora nanhaiensis 12A09T (99.24%). Their close relationship was further supported by phylogenetic analyses, which placed these two strains within a stable clade. The highest values of digital DNA-DNA hybridization (dDDH, 41.4%) and average nucleotide identity (ANI, 90.55%) were detected between strain S1-112 T and Streptomonospora halotolerans NEAU-Jh2-17 T. Genotypic and phenotypic characteristics demonstrated that strain S1-112 T could be distinguished from its closely related relatives. We also profiled the pan-genome and metabolic features of genomic assemblies of strains belonging to the genus Streptomonospora, indicating similar functional capacities and metabolic activities. However, all of these strains showed promising potential for producing diverse types of secondary metabolites. In conclusion, strain S1-112 T represents a novel species of the genus Streptomonospora, for which the name Streptomonospora mangrovi sp. nov. was proposed. The type strain is S1-112 T (= JCM 34292 T).


Assuntos
Actinomycetales , Solo , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Ácido Diaminopimélico/análise , Análise de Sequência de DNA , Actinomycetales/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34343063

RESUMO

A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being 'Steroidobacter cummioxidans' 35Y (98.4 %), 'Steroidobacter agaridevorans' SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to 'S. agaridevorans' SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter. Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter, including average nucleotide identity and digital DNA-DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter. The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter: Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).


Assuntos
Gammaproteobacteria/classificação , Gossypium/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
5.
Antonie Van Leeuwenhoek ; 114(10): 1735-1744, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392432

RESUMO

A Gram-positive, acid-fast and rapidly growing rod, designated S2-37 T, that could form yellowish colonies was isolated from one soil sample collected from cotton cropping field located in the Xinjiang region of China. Genomic analyses indicated that strain S2-37 T harbored T7SS secretion system and was very likely able to produce mycolic acid, which were typical features of pathogenetic mycobacterial species. 16S rRNA-directed phylogenetic analysis referred that strain S2-37 T was closely related to bacterial species belonging to the genus Mycolicibacterium, which was further confirmed by pan-genome phylogenetic analysis. Digital DNA-DNA hybridization and the average nucleotide identity presented that strain S2-37 T displayed the highest values of 39.1% (35.7-42.6%) and 81.28% with M. litorale CGMCC 4.5724 T, respectively. And characterization of conserved molecular signatures further supported the taxonomic position of strain S2-37 T belonging to the genus Mycolicibacterium. The main fatty acids were identified as C16:0, C18:0, C20:3ω3 and C22:6ω3. In addition, polar lipids profile was mainly composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Phylogenetic analyses, distinct fatty aids and antimicrobial resistance profiles indicated that strain S2-37 T represented genetically and phenotypically distinct from its closest phylogenetic neighbour, M. litorale CGMCC 4.5724 T. Here, we propose a novel species of the genus Mycolicibacterium: Mycolicibacterium gossypii sp. nov. with the type strain S2-37 T (= JCM 34327 T = CGMCC 1.18817 T).


Assuntos
Mycobacterium , Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...