Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(42): e2204373, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35951262

RESUMO

Recently, ferromagnetic-heterostructure spintronic terahertz (THz) emitters have been recognized as one of the most promising candidates for next-generation THz sources, owing to their peculiarities of high efficiency, high stability, low cost, ultrabroad bandwidth, controllable polarization, and high scalability. Despite the substantial efforts, they rely on external magnetic fields to initiate the spin-to-charge conversion, which hitherto greatly limits their proliferation as practical devices. Here, a unique antiferromagnetic-ferromagnetic (IrMn3 |Co20 Fe60 B20 ) heterostructure is innovated, and it is demonstrated that it can efficiently generate THz radiation without any external magnetic field. It is assigned to the exchange bias or interfacial exchange coupling effect and enhanced anisotropy. By precisely balancing the exchange bias effect and enhanced THz radiation efficiency, an optimized 5.6 nm-thick IrMn3 |Co20 Fe60 B20 |W trilayer heterostructure is successfully realized, yielding an intensity surpassing that of Pt|Co20 Fe60 B20 |W. Moreover, the intensity of THz emission is further boosted by togethering the trilayer sample and bilayer sample. Besides, the THz polarization may be flexibly controlled by rotating the sample azimuthal angle, manifesting sophisticated active THz field manipulation capability. The field-free coherent THz emission that is demonstrated here shines light on the development of spintronic THz optoelectronic devices.

2.
Opt Express ; 30(8): 13134-13147, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472935

RESUMO

Dental caries is a widespread chronic infectious disease which may induce a series of oral and general problems if untreated. As a result, early diagnosis and follow-up following radiation-free dental caries therapy are critical. Terahertz (THz) waves with highly penetrating and non-ionizing properties are ideally suited for dental caries diagnosis, however related research in this area is still in its infancy. Here, we successfully observe the existence of THz birefringence phenomenon in enamel and demonstrate the feasibility of utilizing THz spectroscopy and birefringence to realize caries diagnosis. By comparing THz responses between healthy teeth and caries, the transmitted THz signals in caries are evidently reduced. Concomitantly, the THz birefringence is also unambiguously inhibited when caries occurs due to the destruction of the internal hydroxyapatite crystal structure. This THz anisotropic activity is position-dependent, which can be qualitatively understood by optical microscopic imaging of dental structures. To increase the accuracy of THz technology in detecting dental caries and stimulate the development of THz caries instruments, the presence of significant THz birefringence effect induced anisotropy in enamel, in combination with the strong THz attenuation at the caries, may be used as a new tool for caries diagnosis.


Assuntos
Cárie Dentária , Espectroscopia Terahertz , Birrefringência , Cárie Dentária/diagnóstico , Humanos , Espectroscopia Terahertz/métodos
3.
Adv Mater ; 34(9): e2106172, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34816497

RESUMO

Future information technologies for low-dissipation quantum computation, high-speed storage, and on-chip communication applications require the development of atomically thin, ultracompact, and ultrafast spintronic devices in which information is encoded, stored, and processed using electron spin. Exploring low-dimensional magnetic materials, designing novel heterostructures, and generating and controlling ultrafast electron spin in 2D magnetism at room temperature, preferably in the unprecedented terahertz (THz) regime, is in high demand. Using THz emission spectroscopy driven by femtosecond laser pulses, optical THz spin-current bursts at room temperature in the 2D van der Waals ferromagnetic Fe3 GeTe2 (FGT) integrated with Bi2 Te3 as a topological insulator are successfully realized. The symmetry of the THz radiation is effectively controlled by the optical pumping incidence and external magnetic field directions, indicating that the THz generation mechanism is the inverse Edelstein effect contributed spin-to-charge conversion. Thickness-, temperature-, and structure-dependent nontrivial THz transients reveal that topology-enhanced interlayer exchange coupling increases the FGT Curie temperature to room temperature, which provides an effective approach for engineering THz spin-current pulses. These results contribute to the goal of all-optical generation, manipulation, and detection of ultrafast THz spin currents in room-temperature 2D magnetism, accelerating the development of atomically thin high-speed spintronic devices.

4.
Front Optoelectron ; 15(1): 12, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36637604

RESUMO

Highly efficient generation and arbitrary manipulation of spin-polarized terahertz (THz) radiation will enable chiral lightwave driven quantum nonequilibrium state regulation, induce new electronic structures, consequently provide a powerful experimental tool for investigation of nonlinear THz optics and extreme THz science and applications. THz circular dichromic spectroscopy, ultrafast electron bunch manipulation, as well as THz imaging, sensing, and telecommunication, also need chiral THz waves. Here we review optical generation of circularly-polarized THz radiation but focus on recently emerged polarization tunable spintronic THz emission techniques, which possess many advantages of ultra-broadband, high efficiency, low cost, easy for integration and so on. We believe that chiral THz sources based on the combination of electron spin, ultrafast optical techniques and material structure engineering will accelerate the development of THz science and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...