Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599595

RESUMO

Intervertebral disc degeneration (IDD) is an age-related disease and is responsible for low back pain. Oxidative stress-induced cell death plays a fundamental role in IDD pathogenesis. Cuproptosis is a recently discovered form of programmed cell death dependent on copper availability. Whether cuproptosis is involved in IDD progression remains unknown. Herein, we established in vitro and in vivo models to investigate cuproptosis in IDD and the mechanisms by which oxidative stress interacts with copper sensitivity in nucleus pulposus cells (NPCs). We found that ferredoxin-1 (FDX1) content increased in both rat and human degenerated discs. Sublethal oxidative stress on NPCs led to increased FDX1 expression, tricarboxylic acid (TCA) cycle-related proteins lipoylation and aggregation, and cell death in the presence of Cu2+ at physiological concentrations, while FDX1 knockdown inhibited cell death. Since copper homeostasis is involved in copper-induced cytotoxicity, we investigated the role of copper transport-related proteins, including importer (CTR1) and efflux pumps (ATPase transporter, ATP7A, and ATP7B). CTR1 and ATP7A content increased under oxidative stress, and blocking CTR1 reduced oxidative stress/copper-induced TCA-related protein aggregation and cell death. Moreover, oxidative stress promoted the expression of specific protein 1 (SP1) and SP1-mediated CTR1 transcription. SP1 inhibition decreased cell death rates, preserved disc hydration, and alleviated tissue degeneration. This suggests that oxidative stress upregulates FDX1 expression and copper flux through promoting SP1-mediated CTR1 transcription, leading to increased TCA cycle-related protein aggregation and cuproptosis. This study highlights the importance of cuproptosis in IDD progression and provides a promising therapeutic target for IDD treatment.

2.
Adv Sci (Weinh) ; 11(22): e2400749, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554394

RESUMO

Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-É£ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.


Assuntos
Senescência Celular , Degeneração do Disco Intervertebral , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Nanopartículas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Masculino , Ratos , Membrana Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Núcleo Pulposo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
3.
Exp Mol Med ; 56(2): 408-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316963

RESUMO

Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Animais , Camundongos , Fator 3 Ativador da Transcrição , Quimiocinas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Inflamação , Ligantes , Macrófagos , Receptores de Quimiocinas , Transdução de Sinais , Receptor 4 Toll-Like , Humanos
4.
ACS Nano ; 18(4): 3053-3072, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237054

RESUMO

The progressive worsening of disc degeneration and related nonspecific back pain are prominent clinical issues that cause a tremendous economic burden. Activation of reactive oxygen species (ROS) related inflammation is a primary pathophysiologic change in degenerative disc lesions. This pathological state is associated with M1 macrophages, apoptosis of nucleus pulposus cells (NPC), and the ingrowth of pain-related sensory nerves. To address the pathological issues of disc degeneration and discogenic pain, we developed MnO2@TMNP, a nanomaterial that encapsulated MnO2 nanoparticles with a TrkA-overexpressed macrophage cell membrane (TMNP). Consequently, this engineered nanomaterial showed high efficiency in binding various inflammatory factors and nerve growth factors, which inhibited inflammation-induced NPC apoptosis, matrix degradation, and nerve ingrowth. Furthermore, the macrophage cell membrane provided specific targeting to macrophages for the delivery of MnO2 nanoparticles. MnO2 nanoparticles in macrophages effectively scavenged intracellular ROS and prevented M1 polarization. Supportively, we found that MnO2@TMNP prevented disc inflammation and promoted matrix regeneration, leading to downregulated disc degenerative grades in the rat injured disc model. Both mechanical and thermal hyperalgesia were alleviated by MnO2@TMNP, which was attributed to the reduced calcitonin gene-related peptide (CGRP) and substance P expression in the dorsal root ganglion and the downregulated Glial Fibrillary Acidic Protein (GFAP) and Fos Proto-Oncogene (c-FOS) signaling in the spinal cord. We confirmed that the MnO2@TMNP nanomaterial alleviated the inflammatory immune microenvironment of intervertebral discs and the progression of disc degeneration, resulting in relieved discogenic pain.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Neuralgia , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Citocinas/metabolismo , Biônica , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Óxidos/metabolismo , Inflamação/metabolismo
5.
Adv Sci (Weinh) ; 11(10): e2304761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145353

RESUMO

Exogenous stem cell therapy and endogenous repair has shown great potential in intervertebral disc regeneration. However, limited nutrients and accumulation of lactate largely impair the survival and regenerative capacity of implanted stem cells and endogenous nucleus pulposus cells (NPCs). Herein, an injectable hydrogel microsphere (LMGDNPs) have been developed by immersing lactate oxidase (LOX)-manganese dioxide (MnO2 ) nanozyme (LM) into glucose-enriched decellularized nucleus pulposus hydrogel microspheres (GDNPs) through a microfluidic system. LMGDNPs showed a delayed release profile of LOX and satisfactory enzymatic capacity in consuming lactate. Mesenchymal stem cells (MSCs) plated on LMGDNPs exhibited better cell viability than cells on GelMA and decellularized nucleus pulposus microspheres (DNP) and showed a obviously increased NPCs phenotype. LMGDNPs prevented MSCs and NPCs death and promoted extracellular matrix synthesis by exhausting lactate. It is determined that LMGDNPs promoted NPCs autophagy by activating transforming growth factor ß2 overlapping transcript 1 (TGFB2-OT1), relying on the nanozyme. MSCs-loaded LMGDNPs largely preserved disc hydration and alleviated matrix degradation in vivo. Summarily, LMGDNPs promoted cell survival and matrix regeneration by providing a nutrient supply, exhausting lactate, and activating autophagy via TGFB2-OT1 and its downstream pathway and may serve as an ideal delivery system for exogenous stem cell therapy and endogenous repair.


Assuntos
Núcleo Pulposo , Núcleo Pulposo/metabolismo , Microesferas , Compostos de Manganês , Hidrogéis/metabolismo , Óxidos , Células-Tronco , Regeneração , Lactatos/metabolismo
6.
Acta Biomater ; 170: 288-302, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598791

RESUMO

Chronic low back pain mainly attributed to intervertebral disc (IVD) degeneration. Endogenous damage-associated molecular patterns (DAMPs) in the injured IVD, particularly mitochondria-derived nucleic acid molecules (CpG DNA), play a primary role in the inflammatory responses in macrophages. M1-type macrophages form a chronic inflammatory microenvironment by releasing pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia. We fabricated an amphiphilic polycarbonate that naturally forms cationic nanoparticles (cNP) in aqueous solutions, with the hydrophobic core loaded with TrkA-IN-1, an antagonist against the NGF receptor (TrkA). The drug delivery nanoparticles were denoted as TI-cNP. TrkA-IN-1 and TI-cNP were added to the decellularized annulus fibrosus matrix (DAF) hydrogel to form hybrid hydrogels, denoted as TI-DAF and TI-cNP-DAF, respectively. As a result, TrkA-IN-1 showed a delayed release profile both in TI-DAF and TI-cNP-DAF. Each mole of cNP could bind approximately 3 mol of CpG DNA to inhibit inflammation. cNP-DAF and TI-cNP-DAF significantly inhibited the M1 phenotype induced by CpG DNA. TI-DAF and TI-cNP-DAF reduced neurite branching and axon length, and inhibited the expression of neurogenic mediators (CGRP and substance P) in the presence of NGF. Besides, TI-cNP-DAF relieved mechanical hyperalgesia, reduced CGRP and substance P expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat disc herniation model. Summarily, TI-cNP-DAF, a novel composite IVD hydrogel, efficiently mediated the inflammatory environment, inhibited nerve ingrowth and sensitization, and could be clinically applied for treating discogenic pain. STATEMENT OF SIGNIFICANCE: Discogenic lower back pain, related to intervertebral disc degeneration (IDD), imposes a tremendous health and economic burden globally. M1-type macrophages release pro-inflammatory factors and nerve growth factor (NGF) that induce nerve growth into the inner annulus fibrosus, resulting in persistent hyperalgesia and discogenic pain. Reconstructing matrix integrity and modulating the inflammatory microenvironment are promising strategies for preventing the ingrowth and activation of neurites. The TI-cNP-DAF hydrogel recovers tissue integrity, alleviates inflammation, and delivers the TrkA antagonist to inhibit the activity of NGF, thus restraining hyperinnervation and nociceptive input. Due to its simple production process, injectability, and acellular strategy, the hydrogel is operable and holds great potential for treating discogenic lower back pain.

7.
Small ; 19(37): e2206888, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165721

RESUMO

Nucleus pulposus stem cells (NPSCs) senescence plays a critical role in the progression of intervertebral disc degeneration (IDD). Stem cell-derived extracellular vesicles (EV) alleviate cellular senescence. Whereas, the underlying mechanism remains unclear. Low stability largely limited the administration of EV in vivo. RGD, an arginine-glycine-aspartic acid tripeptide, strongly binds integrins expressed on the EV membranes, allowing RGD to anchor EV and prolong their bioavailability. An RGD-complexed nucleus pulposus matrix hydrogel (RGD-DNP) is developed to enhance the therapeutic effects of small EV (sEV). RGD-DNP prolonged sEV retention in vitro and ex vivo. sEV-RGD-DNP promoted NPSCs migration, decreased the number of SA-ß-gal-positive cells, alleviated cell cycle arrest, and reduced p16, p21, and p53 activation. Small RNA-seq showed that miR-3594-5p is enriched in sEV, and targets the homeodomain-interacting protein kinase 2 (HIPK2)/p53 pathway. The HIPK2 knockdown rescues the impaired therapeutic effects of sEV with downregulated miR-3594-5p. RGD-DNP conjugate with lower amounts of sEV achieved similar disc regeneration with free sEV of higher concentrations in DNP. In conclusion, sEV-RGD-DNP increases sEV bioavailability and relieves NPSCs senescence by targeting the HIPK2/p53 pathway, thereby alleviating IDD. This work achieves better regenerative effects with fewer sEV and consolidates the theoretical basis for sEV application for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Humanos , Proteína Supressora de Tumor p53/metabolismo , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Matriz Extracelular/metabolismo , MicroRNAs/genética , Oligopeptídeos , Regeneração , Proteínas de Transporte , Proteínas Serina-Treonina Quinases/metabolismo
8.
Mol Med ; 29(1): 15, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717782

RESUMO

BACKGROUND: Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS: After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS: HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION: HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Adolescente , Reparo de DNA por Recombinação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
9.
10.
Pharmacol Res ; 182: 106287, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671921

RESUMO

Osteosarcoma (OS) is a malignant solid tumor prone to lung metastasis that occurs in adolescents aged 15-19 years. Neoadjuvant chemotherapy and surgical treatment aimed at curing OS have gained limited progress over the last 30 years. Exploring new effective second-line therapies for OS patients is a serious challenge for researchers. Quercetin, a multiple biologically active polyphenolic flavonoid, has been used in tumor therapy. However, the exact mechanism of quercetin is still unknown, which limits the application of quercetin. In the current study, we found that quercetin could inhibit JAK2 through the JH2 domain in a non-covalent manner, resulting in the inhibition of OS proliferation and immune escape via the JAK2-STAT3-PD-L1 signaling axis. More importantly, to overcome the shortcomings of quercetin, including low water solubility and low oral availability, we encapsulated it with folic acid-modified liposomes. The transportation of quercetin by folic acid-modified liposomes may provide a feasible strategy to cure OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Antígeno B7-H1/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ácido Fólico , Humanos , Janus Quinase 2/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator de Transcrição STAT3/metabolismo
11.
FASEB J ; 33(9): 9929-9944, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31180720

RESUMO

Recently, Zika virus (ZIKV) has generated extraordinary concern because of its severe neurotoxicity. Disturbingly, there is no vaccine or specific drug to prevent or treat the diseases caused by ZIKV infection. Thus, it is extremely urgent to characterize the pathogenesis of ZIKV. It has been documented that ZIKV can evade antiviral responses of host cells. Here, we demonstrate that ZIKV strain SZ-WIV01 down-regulates the production of type I IFN and IFN-stimulated genes along with the expression of mitochondrial antiviral signaling protein (MAVS) and mediator of IFN regulatory factor 3 activation (MITA). In the mechanism, ZIKV nonstructural (NS) 3 and NS2B3 negatively regulate IFN-related retinoic acid-inducible gene I-like receptor signaling pathway by targeting MAVS and MITA, respectively. Overexpression of ZIKV NS3 and NS2B3 dramatically inhibits expression of IFN-ß. ZIKV NS3 interacts with MAVS, and NS2B3 interacts with MITA, which catalyzes K48-linked polyubiquitination of MAVS and MITA for degradation. Further investigations suggest that ZIKV NS2B3 impairs polyinosinic:polycytidylic acid-triggered K63-linked polyubiquitination of MITA, thereby subverting the activation of downstream sensors. Our study reveals an undiscovered mechanism for ZIKV to escape the innate immune response, providing new insights into clinical study of vaccines or effective drugs.-Li, W., Li, N., Dai, S., Hou, G., Guo, K., Chen, X., Yi, C., Liu, W., Deng, F., Wu, Y., Cao, X. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Imunidade Inata/fisiologia , Proteínas de Membrana/fisiologia , Zika virus/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Domínios Proteicos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus
12.
J Exp Clin Cancer Res ; 38(1): 2, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606241

RESUMO

BACKGROUND: Glioblastomas multiforme (GBM) is the most devastating primary intracranial malignancy lacking effective clinical treatments. Notch2 has been established to be a prognostic marker and probably involved in GBM malignant progression. N-acetylcysteine (NAC), a precursor of intracellular glutathione (GSH), has been widely implicated in prevention and therapy of several cancers. However, the role of NAC in GBM remains unclear and the property of NAC independent of its antioxidation is largely unknown. METHODS: The mRNA and protein levels of Notch family and other related factors were detected by RT-PCR and western blot, respectively. In addition, intracellular reactive oxygen species (ROS) was measured by flow cytometry-based DCFH-DA. Moreover, cell viability was assessed by CCK8 and cell cycle was analyzed by flow cytometry-based PI staining. The level of apoptosis was checked by flow cytometry-based Annexin V/PI. Cell migration and invasion were evaluated by wound healing and transwell invasion assays. At last, U87 Xenograft model was established to confirm whether NAC could restrain the growth of tumor. RESULTS: Our data showed that NAC could decrease the protein level of Notch2. Meanwhile, NAC had a decreasing effect on the mRNA and protein levels of its downstream targets Hes1 and Hey1. These effects caused by NAC were independent of cellular GSH and ROS levels. The mechanism of NAC-mediated Notch2 reduction was elucidated by promoting Notch2 degradation through Itch-dependent lysosome pathway. Furthermore, NAC could prevent proliferation, migration, and invasion and might induce apoptosis in GBM cells via targeting Notch2. Significantly, NAC could suppress the growth of tumor in vivo. CONCLUSIONS: NAC could facilitate Notch2 degradation through lysosomal pathway in an antioxidant-independent manner, thus attenuating Notch2 malignant signaling in GBM cells. The remarkable ability of NAC to inhibit cancer cell proliferation and tumor growth may implicate a novel application of NAC on GBM therapy.


Assuntos
Acetilcisteína/uso terapêutico , Antivirais/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo , Acetilcisteína/farmacologia , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Glioblastoma/patologia , Humanos , Camundongos , Transdução de Sinais , Transfecção
13.
BMJ Open ; 8(9): e017240, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206071

RESUMO

OBJECTIVE: Unbiased assessment of tumour response is crucial in randomised controlled trials (RCTs). Blinded independent central review is usually used as a supplemental or monitor to local assessment but is costly. The aim of this study is to investigate whether systematic bias existed in RCTs by comparing the treatment effects of efficacy endpoints between central and local assessments. DESIGN: Literature review, pooling analysis and correlation analysis. DATA SOURCES: PubMed, from 1 January 2010 to 30 June 2017. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Eligible articles are phase III RCTs comparing anticancer agents for advanced solid tumours. Additionally, the articles should report objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS) or time to progression (TTP); the treatment effect of these endpoints, OR or HR, should be based on central and local assessments. RESULTS: Of 76 included trials involving 45 688 patients, 17 (22%) trials reported their endpoints with statistically inconsistent inferences (p value lower/higher than the probability of type I error) between central and local assessments; among them, 9 (53%) trials had statistically significant inference based on central assessment. Pooling analysis presented no systematic bias when comparing treatment effects of both assessments (ORR: OR=1.02 (95% CI 0.97 to 1.07), p=0.42, I2=0%; DCR: OR=0.97 (95% CI 0.92 to 1.03), p=0.32, I2=0%); PFS: HR=1.01 (95% CI 0.99 to 1.02), p=0.32, I2=0%; TTP: HR=1.04 (95% CI 0.95 to 1.14), p=0.37, I2=0%), regardless of funding source, mask, region, tumour type, study design, number of enrolled patients, response assessment criteria, primary endpoint and trials with statistically consistent/inconsistent inferences. Correlation analysis also presented no sign of systematic bias between central and local assessments (ORR, DCR, PFS: r>0.90, p<0.01; TTP: r=0.90, p=0.29). CONCLUSIONS: No systematic bias could be found between local and central assessments in phase III RCTs on solid tumours. However, statistically inconsistent inferences could be made in many trials between both assessments.


Assuntos
Viés , Ensaios Clínicos Fase III como Assunto/estatística & dados numéricos , Neoplasias/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Estatística como Assunto , Resultado do Tratamento , Humanos
14.
Ann Transl Med ; 5(24): 481, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29299443

RESUMO

BACKGROUND: In previous studies, complete-case implementation of blind independent central review has been considered unnecessary based on no sign of systematic bias between central and local assessments. In order to further evaluate its value, this study investigated evaluation status between both assessments in phase III trials of anti-cancer drugs for non-hematologic solid tumors. METHODS: Eligible trials were searched in PubMed with the date of Jan 1, 2010 to Jun 30, 2017. We compared objective response rate (ORR) and disease control rate (DCR) between central and local assessments by study-level pooled analysis and correlation analysis. In pooled analysis, direct comparison was measured by the odds ratio (OR) of central-assessed response status to local-assessed response status; to investigate evaluation bias between central and local assessments, the above calculated OR between experimental (exp-) and control (con-) arms were compared, measured by the ratio of OR. RESULTS: A total of 28 included trials involving 17,466 patients were included (28 with ORR, 16 with DCR). Pooled analysis showed central assessment reported lower ORR and DCR than local assessment, especially in trials with open-label design, central-assessed primary endpoint, and positive primary endpoint outcome, respectively. However, this finding could be found in both experimental [exp-ORR: OR=0.81 (95% CI: 0.76-0.87), P<0.01, I2=11%; exp-DCR: OR=0.90 (0.81-1.01), P=0.07, I2=42%] and control arms [con-ORR: OR=0.79 (0.72-0.85), P<0.01, I2=17%; con-DCR: OR=0.94 (0.86-1.02), P=0.14, I2=12%]. No sign of evaluation bias between two assessments was indicated through further analysis [ORR: ratio of OR=1.02 (0.97-1.07), P=0.42, I2=0%; DCR: ratio of OR=0.98 (0.93-1.03), P=0.37, I2=0%], regardless of mask (open/blind), sample size, tumor type, primary endpoint (central-assessed/local-assessed), and primary endpoint outcome (positive/negative). Correlation analysis demonstrated a high-degree concordance between central and local assessments (exp-ORR, con-ORR, exp-DCR, con-DCR: r>0.90, P<0.01). CONCLUSIONS: Blind independent central review remained irreplaceable to monitor local assessment, but its complete-case implementation may be unnecessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...