Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38462125

RESUMO

The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes (KCs). KCs and melanocytes respond to UV exposure by eliciting a tanning response. However, how KCs and melanocytes interact in the absence of UV exposure is unknown. In this study, we demonstrate that after SPRY1 knockout in epidermal KCs, melanocyte stem cells in the hair follicle exit the niche without depleting the pool of these cells. We also found that melanocyte stem cells migrate to the epidermis in a p53/stem cell factor/C-KIT-dependent manner induced by a tanning-like response resulting from SPRY1 loss in epidermal KCs. Once there, these cells differentiate into functional melanocytes. These findings provide an example in which the migration of melanocyte stem cells to the epidermis is due to loss of SPRY1 in epidermal KCs and show the potential for developing therapies for skin pigmentation disorders by manipulating melanocyte stem cells.

2.
J Invest Dermatol ; 144(4): 774-785.e10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37827278

RESUMO

Psoriasis is characterized by excessive keratinocyte proliferation and immunocyte infiltration, but the underlying pathogenesis remains unclear. Aminoacyl-tRNA synthetases are universally expressed enzymes that catalyze the first step of protein synthesis. Glycyl-tRNA synthetase (GARS) is a member of the aminoacyl-tRNA synthetase family. In addition to its canonical function, we found that GARS was overexpressed in the serum and skin lesions of patients with psoriasis. Moreover, GARS was highly expressed in human skin keratinocytes, and GARS knockdown in keratinocytes suppressed cell proliferation and promoted apoptosis through NF-κB/MAPK signaling pathway. Moreover, intradermal injection of recombinant GARS protein caused skin thickening, angiogenesis, and IFN/TNF-driven skin inflammation. Intriguingly, the reported functional receptor for GARS, cadherin 6 (CDH6), was specifically expressed in vascular endothelial cells, and we found that keratinocyte-derived GARS promotes inflammation and angiogenesis of vascular endothelial cells through CDH6. In addition, intradermal injection of GARS aggravated the phenotype and angiogenesis in imiquimod-induced psoriasiform dermatitis models, whereas the psoriatic phenotype and angiogenesis were relieved after knockdown of GARS by adeno-associated virus. Taken together, the results of this study identify the critical role of GARS in the pathogenesis of psoriasis and suggest that blocking GARS may be a therapeutic approach for alleviating psoriasis.


Assuntos
Dermatite , Glicina-tRNA Ligase , Psoríase , Humanos , Angiogênese , Dermatite/patologia , Células Endoteliais/patologia , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , Psoríase/patologia , Pele/patologia
3.
Sci Data ; 10(1): 873, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057329

RESUMO

Lithocarpus, with >320 species, is the second largest genus of Fagaceae. However, the lack of a reference genome limits the molecular biology and functional study of Lithocarpus species. Here, we report the chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder), the first Lithocarpus species to be sequenced to date. Sweet tea has a 952-Mb genome, with a 21.4-Mb contig N50 value and 98.6% complete BUSCO score. In addition, the per-base consensus accuracy and completeness of the genome were estimated at 60.6 and 81.4, respectively. Genome annotation predicted 37,396 protein-coding genes, with repetitive sequences accounting for 64.2% of the genome. The genome did not undergo whole-genome duplication after the gamma (γ) hexaploidy event. Phylogenetic analysis showed that sweet tea diverged from the genus Quercus approximately at 59 million years ago. The high-quality genome assembly and gene annotation resources enrich the genomics of sweet tea, and will facilitate functional genomic studies in sweet tea and other Fagaceae species.


Assuntos
Genoma de Planta , Quercus , Cromossomos , Anotação de Sequência Molecular , Filogenia , Quercus/genética , Chá
4.
Front Immunol ; 14: 1273182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053996

RESUMO

Atopic dermatitis (AD) is one of the most common inflammatory skin diseases with complex pathogenesis involving epidermal barrier dysfunction, skin microbiome abnormalities and type-2-skewed immune dysregulation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays critical roles in various biological processes. However, the role of STAT3 in epidermal keratinocytes in AD remains unclear. In this study, we generated an epidermal keratinocyte-specific Stat3-deficient mouse strain (termed Stat3 cKO mice). After topical 2,4-dinitrochlorobenzene (DNCB) treatment, Stat3 cKO mice developed worsened AD-like skin inflammation with increased Ki67+ cells, decreased filaggrin and loricrin expression, and downregulated S100A9 and LL37. The dominant microbial population in Stat3 cKO mice changed from Ralstonia to Staphylococcus. DNCB-treated Stat3 cKO mice displayed more infiltrating type-2 inflammatory cells, including mast cells, eosinophils, and CD4+T cells, accompanied by increased skin IL-4 and serum IgE levels. Moreover, thymic stromal lymphopoietin (TSLP), mainly produced by keratinocytes, was highly expressed in the ear skin of Stat3 cKO mice and chemoattracted more TSLPR+ cells. TSLP blockade significantly alleviated DNCB-induced AD-like skin inflammation in Stat3 cKO mice. Thus, epidermal keratinocyte-specific STAT3 deficiency can aggravate AD-like skin inflammation in mice, possibly through TSLP dysregulation.


Assuntos
Dermatite Atópica , Animais , Camundongos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dinitroclorobenzeno , Inflamação/metabolismo , Queratinócitos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linfopoietina do Estroma do Timo , Regulação para Cima
5.
Front Pharmacol ; 14: 1150861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538178

RESUMO

Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.

6.
Front Med (Lausanne) ; 10: 1191057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37387780

RESUMO

The skin is the outermost barrier that separates the human body from the external environment. In psoriasis, immune cells reside within or infiltrate the epidermis to form the epidermal (epithelial) immunological microenvironment (EIME) and engage in complex interactions with keratinocytes, nerves, and microbiota. The proposed hypothesis is that psoriasis is a chronic inflammatory disease mainly mediated by a specific inflammatory environment composed of keratinocyte-neuro-immune cell units (KNICUs). These KNICUs arise from the interaction between activated epidermal keratinocytes, nerves, immune cells, and the skin microbiota, forming a complex interaction framework. Multiple units gather to complete the circulatory and amplified loops, consequently serving as a group army to initiate and maintain psoriasis.

7.
Front Plant Sci ; 14: 1174972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215286

RESUMO

Fagaceae species dominate forests and shrublands throughout the Northern Hemisphere, and have been used as models to investigate the processes and mechanisms of adaptation and speciation. Compared with the well-studied genus Quercus, genomic data is limited for the tropical-subtropical genus Castanopsis. Castanopsis hystrix is an ecologically and economically valuable species with a wide distribution in the evergreen broad-leaved forests of tropical-subtropical Asia. Here, we present a high-quality chromosome-scale reference genome of C. hystrix, obtained using a combination of Illumina and PacBio HiFi reads with Hi-C technology. The assembled genome size is 882.6 Mb with a contig N50 of 40.9 Mb and a BUSCO estimate of 99.5%, which are higher than those of recently published Fagaceae species. Genome annotation identified 37,750 protein-coding genes, of which 97.91% were functionally annotated. Repeat sequences constituted 50.95% of the genome and LTRs were the most abundant repetitive elements. Comparative genomic analysis revealed high genome synteny between C. hystrix and other Fagaceae species, despite the long divergence time between them. Considerable gene family expansion and contraction were detected in Castanopsis species. These expanded genes were involved in multiple important biological processes and molecular functions, which may have contributed to the adaptation of the genus to a tropical-subtropical climate. In summary, the genome assembly of C. hystrix provides important genomic resources for Fagaceae genomic research communities, and improves understanding of the adaptation and evolution of forest trees.

8.
Mol Ecol ; 32(7): 1639-1655, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626136

RESUMO

Understanding the evolutionary processes that shape the landscape of genetic variation and influence the response of species to future climate change is critical for biodiversity conservation. Here, we sampled 27 populations across the distribution range of a dominant forest tree, Quercus acutissima, in East Asia, and applied genome-wide analyses to track the evolutionary history and predict the fate of populations under future climate. We found two genetic groups (East and West) in Q. acutissima that diverged during Pliocene. We also found a heterogeneous landscape of genomic variation in this species, which may have been shaped by population demography and linked selections. Using genotype-environment association analyses, we identified climate-associated SNPs in a diverse set of genes and functional categories, indicating a model of polygenic adaptation in Q. acutissima. We further estimated three genetic offset metrics to quantify genomic vulnerability of this species to climate change due to the complex interplay between local adaptation and migration. We found that marginal populations are under higher risk of local extinction because of future climate change, and may not be able to track suitable habitats to maintain the gene-environment relationships observed under the current climate. We also detected higher reverse genetic offsets in northern China, indicating that genetic variation currently present in the whole range of Q. acutissima may not adapt to future climate conditions in this area. Overall, this study illustrates how evolutionary processes have shaped the landscape of genomic variation, and provides a comprehensive genome-wide view of climate maladaptation in Q. acutissima.


Assuntos
Mudança Climática , Quercus , Árvores , Florestas , Estudo de Associação Genômica Ampla , Genômica , Quercus/genética , Árvores/genética
9.
J Invest Dermatol ; 143(5): 822-831.e4, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502938

RESUMO

Proinflammatory cytokines, such as IL-1ß, are important mediators of psoriasis. UBE2L3, an E2 enzyme, is thought to be an indirect target of IL-1ß secretion by binding to ubiquitin ligases such as TRIM21. However, its role in psoriasis remains unknown. In this study, we found that UBE2L3 expression was decreased in psoriatic epidermis, whereas caspase 1 and IL-1ß signaling were strongly activated. When normal human epidermal keratinocytes were stimulated with nigericin, adenosine triphosphate, and poly(dA:dT), downregulation of UBE2L3 and increased secretion of IL-1ß were observed. Treatment with a caspase 1 inhibitor reversed the decrease in the level of UBE2L3. In addition, UBE2L3 overexpression reduced TRIM21, decreased signal transducer and activator of transcription 3 pathway activity, and reduced the level of the IL-1ß precursor (pro‒IL-1ß). Consistently, silencing UBE2L3 enhanced TRIM21 expression, signal transducer and activator of transcription 3 activation, and pro‒IL-1ß production. Finally, in an imiquimod-induced mouse model, UBE2L3 reduction and caspase 1 activation were localized in the epidermis, whereas overexpression of UBE2L3 ameliorated psoriasis-like lesions and reduced pro‒IL-1ß and mature IL-1ß levels in the epidermis. Thus, UBE2L3 may be a protective biomarker that regulates IL-1ß and inhibits TRIM21 in the epidermis of psoriasis.


Assuntos
Psoríase , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Epiderme/patologia , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
10.
Cell Commun Signal ; 20(1): 185, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419191

RESUMO

BACKGROUND: The Isoleucyl-tRNA synthetase (IARS) catalyzes isoleucine to the corresponding tRNA, maintaining the accuracy of gene translation. Its role in psoriasis has been not investigated so far. In this study, we aimed to investigate the mechanisms underlying the efficacy of IARS inhibitor, mupirocin, treatment for psoriasis. METHODS: The expression of IARS was determined by immunofluorescence, Western blot and qRT-PCR in normal healthy control- and psoriatic human skin. An imiquimod (IMQ) -induced psoriasis-like skin disease model was used to study the phenotypes changed by an IARS inhibitor, mupirocin (MUP). Endotypes were analyzed by RNA-seq, R&D Luminex multi-factor technique, ELISA, immunofluorescence and flow cytometry. Additionally, the effect of MUP on epidermal keratinocytes (KCs) were conducted in-vitro in primary cultured human KCs. RESULTS: We found the expression of IARS was higher in psoriatic skin than in healthy controls. In IMQ-induced psoriasis-like C57BL/6 J mouse model, MUP reversed IMQ-induced keratinocytes proliferation, expression of inflammatory cytokines and infiltration of immune cells. Furthermore, in cultured human keratinocytes, MUP inhibited proliferation, but promoted apoptosis, which may be related with STAT3 signaling pathway. CONCLUSION: Our finding of blocking the infiltration of immune cells by inhibiting the formation of IARS, could be one mechanism to explain the effect of MUP in the treatment of psoriasis. Developing strategies targeting suppression IARS should open new perspectives for the treatment of psoriasis. Video Abstract.


Assuntos
Psoríase , Dermatopatias , Animais , Humanos , Camundongos , Imiquimode , Isoleucina-tRNA Ligase , Camundongos Endogâmicos C57BL , Mupirocina , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico
11.
Cell Mol Immunol ; 19(12): 1400-1413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36348078

RESUMO

Psoriasis is a common chronic inflammatory skin disease. The diversity and heterogeneity of immune cells in human skin have been studied in recent years, but the spatial distribution of immune cells at the single-cell level in the human psoriatic epidermis and dermis remains unclear. In this study, we mapped psoriatic skin immune cells from paired lesional, perilesional, and nonlesional skin samples using mass cytometry. Phenotypic dendritic cells (DCs) were found in the psoriatic epidermis and dermis. Psoriatic dermal CD1c+CD11b+ cDC2s migrated to the epidermis in the perilesional skin during the preinitiation stage. CD1c+CD11b+ cDC2s rapidly replaced EpCAM+CD11clow LC cells and initiated inflammation. Simultaneously, CD207+CD11chi LC and CD5+ T cells accumulated in the psoriatic epidermis and orchestrated epidermal inflammation in psoriasis. The immune cell pool in the psoriatic dermis primarily included APCs and T cells. However, unlike that in the dermis, the epidermal immune environment was more significant and coincided with the inflammation occurring during psoriasis.The epidermal immune microenvironment plays a dominant role in psoriasis. Langerhans cells, epidermis-resident memory T cells and macrophages together contribute to healthy epidermal immune homeostasis. However, psoriatic CD1c+CD11b+ epidermal cDC2s are positioned in the perilesional area, replacing EpCAM+CD11clow LCs rapidly and initiating inflammation. Epidermal CD141+ cDC1s, CD1c+ cDC2s, CD14+ moDCs, and BDCA2+ pDCs orchestrate psoriatic inflammation. Meanwhile, CD11chi LCs and CD5+ T cells accumulate in the psoriatic epidermis.


Assuntos
Psoríase , Humanos , Molécula de Adesão da Célula Epitelial , Epiderme , Pele , Células de Langerhans , Inflamação , Antígeno CD11c
12.
Dermatol Ther ; 35(12): e15911, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209377

RESUMO

Secukinumab is a recombinant, fully human monoclonal anti-IL-17A antibody approved to treat moderate-to-severe psoriasis and psoriatic arthritis. Its effectiveness and safety have been confirmed, but a gradual increase in the secukinumab dosing interval has not been investigated. To assess the feasibility, efficacy, and safety of gradually increasing the secukinumab dosing interval; the interval duration was determined by changes in the Psoriasis Area and Severity Index scores. Patients with moderate-to-severe plaque psoriasis received secukinumab 300 mg subcutaneously at baseline and weeks 0, 1, 2, and 3. At week 4, the improvement from baseline PASI guided the next injection time until week 36. In total, 83 patients were recruited. PASI 75 was achieved by 80%, 96%, and 95% of patients at weeks 4, 12, and 36, respectively. PASI 90 was achieved by 54%, 95%, and 84% of patients at weeks 4, 12, and 36, respectively. PASI 100 was achieved by 28%, 89%, and 68% of patients at weeks 4, 12, and 36, respectively. The average PASI score (1.05 ± 1.83) was significantly lower at week 36 than at baseline. Most patients reached PASI 75 at week 36 in our modified study. This study may provide information for future biotherapies.


Assuntos
Anticorpos Monoclonais , Psoríase , Humanos , Estudos Prospectivos , Anticorpos Monoclonais/efeitos adversos , Índice de Gravidade de Doença , Resultado do Tratamento , Método Duplo-Cego , Psoríase/diagnóstico , Psoríase/tratamento farmacológico
13.
Cell Prolif ; 55(10): e13290, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35716036

RESUMO

OBJECTIVES: Psoriasis is an immune-mediated skin disease dominated by the cutaneous immune system. Keratinocytes have been considered important triggers that initiate psoriasis. The key molecules and events of keratinocytes that link the innate immune system in psoriasis must be investigated in more detail. Human psoriasis skin and primary human keratinocyte were detected in vitro. Epidermis specific transgenic mouse strain (Krt14-Sprouty1 tg) was used to further investigate psoriasis-like skin inflammation in vivo. MATERIALS AND METHODS: Bulk RNA sequencing of primary human keratinocyte screened differentially expressed genes, which was confirmed by quantitative real time PCR and Western Blot (WB). Moreover, we concomitantly reviewed open-accessed published RNAseq datasets of human psoriatic skin from GEO database. Immunohistochemical staining and immunofluorescence were used to detect Sprouty1 (SPRY1) expression in human psoriatic skin with and without anti-psoriasis treatments. Krt14-Sprouty1 tg was used to further investigate psoriasis-like skin inflammation, and followed by Hematoxylin and Eosin (HE) Staining, enzyme linked immunosorbent assay (ELISA), Western Blot and flow cytometry. RESULTS: Our data showed that Sprouty1 was decreased in psoriatic skin and keratinocytes. In imiquimod-induced psoriasis-like skin inflammation, the production of cathelicidin (camp/LL37) was inhibited by suppressing signal transducer and activator of transcription3 (Stat3) activation when Sprouty1 overexpressed in mouse epidermal keratinocytes. Moreover, CD11b+CCR2+ dendritic cells, IL-17A+ γδT cells, and Ly6C+ CD11c+ monocyte-derived dendritic cells were decreased in Krt14-Sprouty1 tg (STG) imiquimod-induced cutaneous inflammation. CONCLUSIONS: These findings indicate that Sprouty1 expressed in keratinocytes has a suppressive role in imiquimod-induced skin inflammation mediated by inhibiting the production of cathelicidin. Collectively, Sprouty1 plays a preventive role in psoriatic skin. Our data provide new evidence for the pathogenesis of psoriatic keratinocytes, and the link cutaneous innate immunity, that indicated Sprouty1 is a potential novel therapeutic target.


Assuntos
Interleucina-17 , Proteínas de Membrana , Fosfoproteínas , Psoríase , Animais , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Modelos Animais de Doenças , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Imiquimode/efeitos adversos , Imunidade Inata , Inflamação/metabolismo , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Camundongos , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele/metabolismo , Catelicidinas
14.
Cell Mol Life Sci ; 79(5): 267, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488965

RESUMO

Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Dermatite/metabolismo , Dermatite/patologia , Epiderme/metabolismo , Queratinócitos/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Psoríase/patologia
15.
J Invest Dermatol ; 142(10): 2635-2645.e9, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35305973

RESUMO

Psoriasis is a systemic immune‒mediated inflammatory disease characterized by hyperproliferation and abnormal differentiation of epidermal keratinocytes. Recent studies have identified IL-17 and IL-23 as key drivers of psoriasis pathogenesis, but the underlying molecular mechanisms remain unclear. The 2'-5'-oligoadenylate synthetases (OASs), namely, OAS1, OAS2, OAS3, and OASL, are a family of IFN-induced enzymes with multiple antiviral activities, but their role in psoriasis is unknown. In this study, we identified the overexpression of OAS1, OAS2, and OAS3 in human lesional psoriatic skin and serum and found that their expression was downregulated by biologics. Moreover, OASs were highly expressed in epidermal keratinocytes, epidermal dendritic cells, epidermal CD3+ T cells, dermal antigen-presenting cells, and dermal T cells from the psoriatic epidermis and dermis, as determined by flow cytometry. In addition, OASs were upregulated by poly(I:C), poly(dA:dT), and IFN-1s but downregulated by Jak inhibitors in normal human epidermal keratinocytes. Furthermore, silencing of OASs inhibited the phosphorylation of Jak1 and signal transducer and activator of transcription 1. Knockdown of OASs suppressed keratinocyte proliferation by inhibiting cell cycle progression. Thus, OASs may be therapeutic biomarkers in psoriasis.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Produtos Biológicos , Psoríase , Antivirais , Biomarcadores/metabolismo , Ciclo Celular , Proliferação de Células , Epiderme/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Janus Quinase 1 , Queratinócitos/metabolismo , Ligases/metabolismo , Fosforilação , Psoríase/patologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
16.
Nat Commun ; 13(1): 1320, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288565

RESUMO

Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.


Assuntos
Genomas de Plastídeos , Quercus , Ecossistema , Florestas , Genomas de Plastídeos/genética , Filogenia
17.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35349686

RESUMO

The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.


Assuntos
Brassicaceae , Brassicaceae/genética , Evolução Molecular , Conversão Gênica , Genoma , Genômica , Seleção Genética
19.
New Phytol ; 233(1): 555-568, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637540

RESUMO

Natural selection shapes genome-wide patterns of diversity within species and divergence between species. However, quantifying the efficacy of selection and elucidating the relative importance of different types of selection in shaping genomic variation remain challenging. We sequenced whole genomes of 101 individuals of three closely related oak species to track the divergence history, and to dissect the impacts of selective sweeps and background selection on patterns of genomic variation. We estimated that the three species diverged around the late Neogene and experienced a bottleneck during the Pleistocene. We detected genomic regions with elevated relative differentiation ('FST -islands'). Population genetic inferences from the site frequency spectrum and ancestral recombination graph indicated that FST -islands were formed by selective sweeps. We also found extensive positive selection; the fixation of adaptive mutations and reduction neutral diversity around substitutions generated a signature of selective sweeps. Prevalent negative selection and background selection have reduced genetic diversity in both genic and intergenic regions, and contributed substantially to the baseline variation in genetic diversity. Our results demonstrate the importance of linked selection in shaping genomic variation, and illustrate how the extent and strength of different selection models vary across the genome.


Assuntos
Quercus , Variação Genética , Genética Populacional , Genoma , Genômica , Quercus/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...