Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668206

RESUMO

Nano-electrochemical materials and devices are at the frontier of research and development, advancing electrochemistry and its applications in energy storage, sensing, electrochemical processing, etc [...].

3.
Mikrochim Acta ; 191(2): 85, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195845

RESUMO

A ratiometric electrochemical immunosensor is proposed for simultaneous detection of cellular-myelocytomatosis oncoprotein (C-myc) and B-cell lymphoma 2 (Bcl-2) via the potential-resolved strategy. It relied on multi-role co-loaded alloy composites (CLACs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO)-multiwalled carbon nanotubes (MWCNTs) (PGM) modified electrodes. CLACs with good catalytic and enzyme-like properties were synthesized in one step by loading tetramethylbenzidine (TMB) or methylene blue (MB) into Pt-Pd alloy and used as label materials. After immunological reactions, CLACs showed distinguishable dual differential pulse voltammetry signals at - 0.26 V and 0.38 V, corresponding to C-myc and Bcl-2, and the PGM had an electrochemical signal at 1.2 V, which could be used as a reference signal to construct a ratiometric sensor. CLACs had a satisfactory synergistic effect with the PGM, and eventually achieved quadruple signal amplification. Thus, benefiting from multiple magnification and ratiometric self-calibration functions, sensitive detections of C-myc and Bcl-2 were achieved, with detection limits as low as 0.5 and 2.5 pg mL-1, respectively. Additionally, when the designed method was applied to blood samples from lymphoma patients, results consistent with the ELISA kit were obtained. This will open avenues for constructing multiple protein detection sensors.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Humanos , Imunoensaio , Ligas , Calibragem
4.
Inorg Chem ; 62(33): 13505-13511, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37561010

RESUMO

Because the morphology of vertically oriented graphene (VG) synthesized by the plasma-enhanced chemical vapor deposition process determines the application performance of VG, morphology control is always an important part of the research. A concise correspondence between plasma and the morphology of VG is the key to investigating the morphology control of VG, which is still under research. In this study, a simple but effective parameter, position, is used to grow VG, by which the continuous morphology evolution of VG is realized. As a result, the morphology of VGs varies from a porous structure to a "wall-like" structure, thus leading to a continuous change in its hydrophobicity and thermal emissivity. An ultrahigh emissivity of 0.999 with superhydrophobicity is obtained among these VGs, showing great potential in the area of the black body and infrared thermometer. Finally, the states of active particles in plasma depending on the positions are diagnosed to investigate their relations with the morphology of VGs.

5.
Micromachines (Basel) ; 14(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630141

RESUMO

The integration of trivalent europium ion (Eu3+)-doped zinc molybdate (ZnMoO4) as red phosphors in next-generation solid-state lighting (SSL) is impeded by their extended electron lifetime and suboptimal thermal stability. To overcome these limitations, we propose a co-doping approach by incorporating Mn2+ and Eu3+ in ZnMoO4, aiming to improve thermal reversibility and reduce the lifetime of electron transitions. A series of Eu3+-doped ZnMoO4 and Mn2+/Eu3+-co-doped ZnMoO4 phosphor materials were synthesized via the conventional sol-gel method, and their photoluminescence properties were compared under high-temperature conditions. Experimental results indicate that the introduction of Mn2+ into Eu3+-doped ZnMoO4 leads to a decrease in quantum efficiency and electron lifetime, primarily attributed to defects within the crystal lattice and energy transfer from Eu3+ to Mn2+, resulting in enhanced non-radiative transitions. However, the addition of a small quantity of Mn2+ remarkably improves the thermal stability and reversibility of the phosphors. Consequently, this co-doping strategy presents a promising avenue for expanding the application possibilities of phosphor materials, particularly for high-power SSL applications subjected to elevated temperatures. Hence, Eu3+-only doped samples are well-suited for lighting applications due to their high IQE and excellent thermal stability. Conversely, Eu3+/Mn2+-co-doped samples show promise in applications that require a shorter electron lifetime and good reversibility.

6.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375179

RESUMO

In this study, a series of trivalent europium-doped tungstate and molybdate samples were synthesized using an improved sol-gel and high-temperature solid-state reaction method. The samples had different W/Mo ratios and were calcined at various temperatures ranging from 800 to 1000 °C. The effects of these variables on the crystal structure and photoluminescence characteristics of the samples were investigated. It was found that a doping concentration of 50% for europium yielded the best quantum efficiency based on previous research. The crystal structures were found to be dependent on the W/Mo ratio and calcination temperature. Samples with x ≤ 0.5 had a monoclinic lattice structure that did not change with calcination temperature. Samples with x > 0.75 had a tetragonal structure that remained unchanged with calcination temperature. However, samples with x = 0.75 had their crystal structure solely dependent on the calcination temperature. At 800-900 °C, the crystal structure was tetragonal, while at 1000 °C, it was monoclinic. Photoluminescence behavior was found to correlate with crystal structure and grain size. The tetragonal structure had significantly higher internal quantum efficiency than the monoclinic structure, and smaller grain size had higher internal quantum efficiency than larger grain size. External quantum efficiency initially increased with increasing grain size and then decreased. The highest external quantum efficiency was observed at a calcination temperature of 900 °C. These findings provide insight into the factors affecting the crystal structure and photoluminescence behavior in trivalent europium-doped tungstate and molybdate systems.

7.
RSC Adv ; 13(26): 18090-18098, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323431

RESUMO

Demands for highly deformable and responsive intelligent actuators are increasing rapidly. Herein, a photothermal bilayer actuator consisting of a photothermal-responsive composite hydrogel layer and a polydimethylsiloxane (PDMS) layer is presented. The photothermal-responsive composite hydrogel is prepared by compositing hydroxyethyl methacrylate (HEMA) and the photothermal material graphene oxide (GO) with the thermal-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAM). The HEMA improves the transport efficiency of water molecules inside the hydrogel network, eliciting a fast response and large deformation, facilitating greater bending behavior of the bilayer actuator, and improving the mechanical and tensile properties of the hydrogel. Moreover, GO enhances the mechanical properties and the photothermal conversion efficiency of the hydrogel in the thermal environment. This photothermal bilayer actuator can be driven under various conditions, such as hot solution, simulated sunlight, and laser, and can achieve large bending deformation with desirable tensile properties, broadening the application conditions for bilayer actuators, such as artificial muscles, bionic actuators, and soft robotics.

8.
Sci Total Environ ; 886: 163985, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37160181

RESUMO

The anaerobic digestion of organic materials produces biogas; however, optimizing methane (CH4) content within biogas plants by capturing carbon dioxide (CO2) is one of the challenges for sustainable biomethane production. CH4 is separated from biogas, which is called biogas upgrading for biomethane production. In this regard, in-situ CO2 capture and utilization could be an alternative approach that can be achieved using conductive particles, where the conductive particles support the direct intraspecific electron transfer (DIET) to promote CH4 production. In this investigation, a carbon nanotube (CNT) was grown over conductive activated carbon (AC). Then an iron (Fe) nanoparticle was anchored (AC/CNT/Fe), which ultimately supported microbes to build the biofilm matrix, thereby enhancing the DIET for CH4 formation. The biogas production and CH4 content increased by 17.57 % and 15.91 %, respectively, when AC/CNT/Fe was utilized. Additionally, 18S rRNA gene sequencing reveals that Methanosarcinaceae and Methanobacteriaceae families were the most dominant microbes in the reactor when conductive particles (AC/CNT/Fe) were applied. The proposed study supports the stable operation of biogas plants to utilize CO2 for CH4 production by using surface-modified material.


Assuntos
Biocombustíveis , Carvão Vegetal , Humanos , Anaerobiose , Dióxido de Carbono , Reatores Biológicos , Metano
9.
Appl Opt ; 62(11): 2862-2868, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133129

RESUMO

A method to realize an equal-intensity beam splitter (EIBS) using wire grid polarizers (WGPs) is proposed. The EIBS consists of WGPs with predetermined orientations and high-reflectivity mirrors. We demonstrated the generation of three laser sub-beams (LSBs) with equivalent intensities using EIBS. The three LSBs were incoherent by introducing optical path differences larger than the laser coherence length. The LSBs were used to reduce speckle passively, where the objective speckle contrast was reduced from 0.82 to 0.5 when all three LSBs were used. The feasibility of EIBS in speckle reduction was studied using a simplified laser projection system. The structure of the EIBS implemented by WGPs is simpler than EIBSs obtained by other methods.

10.
Research (Wash D C) ; 6: 0100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011282

RESUMO

Traditional metal oxide semiconductor (MOS) gas sensors have limited applications in wearable devices owing to their inflexibility and high-power consumption by substantial heat loss. To overcome these limitations, we prepared doped Si/SiO2 flexible fibers by a thermal drawing method as substrates to fabricate MOS gas sensors. A methane (CH4) gas sensor was demonstrated by subsequently in situ synthesizing Co-doped ZnO nanorods on the fiber surface. The doped Si core acted as the heating source through Joule heating, which conducted heat to the sensing material with reduced heat loss; the SiO2 cladding was an insulating substrate. The gas sensor was integrated into a miner cloth as a wearable device, and the concentration change of CH4 was monitored in real time through different colored light-emitting diodes. Our study demonstrated the feasibility of using doped Si/SiO2 fibers as the substrates to fabricate wearable MOS gas sensors, where the sensors have substantial advantages over tradition sensors in flexibility, heat utilization, etc.

11.
ACS Appl Mater Interfaces ; 15(10): 13813-13821, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857658

RESUMO

Wearable sensors are vital for the development of electronic skins to improve health monitoring, robotic tactile sensing, and artificial intelligence. Active materials and the construction of microstructures in the sensitive layer are the dominating approaches to improve the performance of pressure sensors. However, it is still a challenge to simultaneously achieve a sensor with a high sensitivity and a wide detection range. In this work, using three-dimensional (3D) vertical graphene (VG) as an active material, in combination with micropyramid arrays and lumpy holders, the stress concentration effects are generated in nano-, micro-, and macroscales. Therefore, the lumpily pyramidal VG film-based pressure sensor (LPV sensor) achieves an ultrahigh sensitivity (131.36 kPa-1) and a wide response range (0.1-100 kPa). Finite element analysis demonstrates that the stress concentration effects are enhanced by the micropyramid arrays and lumpy structures in micro- and macroscales, respectively. Finally, the LPV pressure sensors are tested in practical applications, including wearable health monitoring and force feedback of robotic tactile sensing.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36839069

RESUMO

Many practical applications require flexible high-sensitivity pressure sensors. However, such sensors are difficult to achieve using conventional materials. Engineering the morphology of the electrodes and the topography of the dielectrics has been demonstrated to be effective in boosting the sensing performance of capacitive pressure sensors. In this study, a flexible capacitive pressure sensor with high sensitivity was fabricated by using three-dimensional vertical graphene (VG) as the electrode and micro-pyramidal polydimethylsiloxane (PDMS) as the dielectric layer. The engineering of the VG morphology, size, and interval of the micro-pyramids in the PDMS dielectric layer significantly boosted the sensor sensitivity. As a result, the sensors demonstrated an exceptional sensitivity of up to 6.04 kPa-1 in the pressure range of 0-1 kPa, and 0.69 kPa-1 under 1-10 kPa. Finite element analysis revealed that the micro-pyramid structure in the dielectric layer generated a significant deformation effect under pressure, thereby ameliorating the sensing properties. Finally, the sensor was used to monitor finger joint movement, knee motion, facial expression, and pressure distribution. The results indicate that the sensor exhibits great potential in various applications, including human motion detection and human-machine interaction.

13.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839116

RESUMO

Cobalt oxide (CoOx) nanowires have been broadly explored as advanced pseudocapacitive materials owing to their impressive theoretical gravimetric capacity. However, the traditional method of compositing with conductive nanoparticles to improve their poor conductivity will unpredictably lead to a decrease in actual capacity. The amelioration of the aspect ratio of the CoOx nanowires may affect the pathway of electron conduction and ion diffusion, thereby improving the electrochemical performances. Here, CoOx nanowires with various aspect ratios were synthesized by controlling hydrothermal temperature, and the CoOx electrodes achieve a high gravimetric specific capacity (1424.8 C g-1) and rate performance (38% retention at 100 A g-1 compared to 1 A g-1). Hybrid supercapacitors (HSCs) based on activated carbon anode reach an exceptional specific energy of 61.8 Wh kg-1 and excellent cyclic performance (92.72% retention, 5000 cycles at 5 A g-1). The CoOx nanowires exhibit great promise as a favorable cathode material in the field of high-performance supercapacitors (SCs).

14.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770681

RESUMO

In this study, we developed a technology for broadening the 465 nm and 535 nm excitation peaks of Eu3+:Y2(MoO4)3 via crystal lattice orderly arrangement. This was achieved by powder particle aggregation and diffusion at a high temperature to form a ceramic structure. The powdered Eu3+:Y2(MoO4)3 was synthesized using the combination of a sol-gel process and the high-temperature solid-state reaction method, and it then became ceramic via a sintering process. Compared with the Eu3+:Y2(MoO4)3 powder, the full width at half maximum (FWHM) of the excitation peak of the ceramic was broadened by two- to three-fold. In addition, the absorption efficiency of the ceramic was increased from 15% to 70%, while the internal quantum efficiency reduced slightly from 95% to 90%, and the external quantum efficiency was enhanced from 20% to 61%. More interestingly, the Eu3+:Y2(MoO4)3 ceramic material showed little thermal quenching below a temperature of 473 K, making it useful for high-lumen output operating at a high temperature.

15.
J Cardiothorac Surg ; 17(1): 226, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056357

RESUMO

BACKGROUND: Patients with locally advanced esophageal cancer with a lesion length greater than 8 cm (LCWEC) are prone to high mortality in a short time due to esophagotracheal fistula (ETF) and esophagoaortic fistula (EAF). We tried to explore a safe salvage surgical method during the perioperative period to maximize the resection of the tumor on the premise of safety and reconstruction of the alimentary tract to avoid early death due to ETF and EAF. METHODS: From December 2007 to November 2018, forty-five LCWEC patients were treated using the modified Wu's esophagectomy. Patient features, surgical techniques, postoperative complications, and pathology outcomes were analyzed. RESULTS: The average length of the tumors was 12.5 cm (range 8.1-22.5 cm), and the average transverse tumor diameter was 5.8 cm (range 4.5-7.8 cm). No complications like anastomotic leakage, anastomotic stenosis, chylothorax, delayed gastric emptying, vocal cord paralysis, dumping syndrome, and reflux were detected. The 30-day and in-hospital mortality rates were 0%. Complete (R0) resection was achieved in 38 (84.4%) cases. The resection margin rate of positive anastomosis was 0%. Until the death of the patients, no feeding failure due to gastrointestinal obstruction and early death due to ETF or EAF occurrence. During follow-up, the median time to death was 17.2 months for patients treated with surgery alone and 32 months for patients treated with postoperative multimodal treatment. CONCLUSION: The modified Wu's esophagectomy is a safe and feasible salvage surgical method for LCWEC resection.


Assuntos
Neoplasias Esofágicas , Fístula Traqueoesofágica , Anastomose Cirúrgica/métodos , Neoplasias Esofágicas/cirurgia , Esofagectomia/métodos , Humanos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fístula Traqueoesofágica/cirurgia
16.
ACS Appl Mater Interfaces ; 14(28): 32387-32394, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35818991

RESUMO

The development of microstrain sensors offers significant prospects in diverse applications, such as microrobots, intelligent human-computer interaction, health monitoring, and medical rehabilitation. Among strain sensor materials, vertical graphene (VG) has demonstrated considerable potential as a resistive material; however, VG-based strain sensors with high resolution are yet to be developed. In addition, the detection mechanism of VG has not been extensively investigated. Herein, we developed a VG canal mesh (VGCM) to fabricate a flexible strain sensor for ultralow strain sensing, achieving an accurate response to strains as low as 0.1‰ within a total strain range of 0%-4%. The detection of such low strains is due to the rigorous structural design and strain concentration effect of the three-dimensional micronano structure of the VGCM. Through experimental results and theoretical simulation, the evolution of microcracks in VG and the sensing mechanism of VG and VGCM are elaborated, and the unique advantages of VGCM are revealed. Finally, the VGCM-based strain sensors are proposed as portable breathing test equipment for rapid breathing detection.

17.
Nanomaterials (Basel) ; 12(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745326

RESUMO

A non-enzymatic electrochemical sensor, based on the electrode of a chitosan-derived carbon foam, has been successfully developed for the detection of glutamate. Attributed to the chelation of Cu ions and glutamate molecules, the glutamate could be detected in an amperometric way by means of the redox reactions of chelation compounds, which outperform the traditional enzymatic sensors. Moreover, due to the large electroactive surface area and effective electron transportation of the porous carbon foam, a remarkable electrochemical sensitivity up to 1.9 × 104 µA/mM∙cm2 and a broad-spectrum detection range from nM to mM scale have been achieved, which is two-orders of magnitude higher and one magnitude broader than the best reported values thus far. Furthermore, our reported glutamate detection system also demonstrates a desirable anti-interference ability as well as a durable stability. The experimental revelations show that the Cu ions chelation-assisted electrochemical sensor with carbon foam electrode has significant potential for an easy fabricating, enzyme-free, broad-spectrum, sensitive, anti-interfering, and stable glutamate-sensing platform.

18.
Bioact Mater ; 17: 197-203, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35386448

RESUMO

Glutathione (GSH) is an important biological thiol in cells, which is involved in many physiological processes in the organism and regulates pathological processes of cells. Rapid and accurate monitoring of GSH in vitro and in vivo is quite needed in investigating important biochemical events. In this contribution, innovative cerium (Ce) doped polyaniline (Ce-Fe@PANI NPs) were prepared via Fe(III) induced oxidization polymerization method. Upon addition of GSH, the absorption of Ce-Fe@PANI NPs red shifted from the visible to the NIR region, confirming the excellent absorption response to GSH. Moreover, Ce-Fe@PANI NPs exhibited excellent photoacoustic (PA) imaging enhancement in tube and shifted the PA intensity peak from 680 nm to 820 nm upon addition of GSH. In vitro and in vivo experiment verified that Ce-Fe@PANI NPs can monitor GSH in deep tissues via PA imaging technology. Collectively, this research provides Ce-Fe@PANI NPs would serve as a powerful nanoplatform to realize PA imaging detection of GSH in vitro and in vivo.

19.
Biol Proced Online ; 24(1): 4, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321657

RESUMO

Objective Esophageal carcinoma (ESCA) is deadly cancer worldwide with unknown etiology. This study aimed to investigate the impact and mechanism of RAD6 on the development of Esophageal squamous cell carcinoma (ESCC).Expressions of RAD6A and RAD6B in ESCA were investigated from TCGA dataset and their expressions in tissue sample of ESCA patients and cells were determined. Functional experiments were conducted to explore the impact of RAD6A and RAD6B on malignant characteristics of several kinds of ESCC cells. Animal experiment was established and injected with RAD6A and RAD6B shRNA to evaluate the effect on tumor growth.RAD6A and RAD6B were up-regulated in ESCC cells and tissues. Overexpressed RAD6A and RAD6B similarly increased ESCC cell proliferation, invasion and migration and silencing of RAD6 exerted opposite effects. Knockdown of RAD6A suppressed tumor growth and decreased the level of H2B, as data demonstrated positive correlation between RAD6A and CCNB1 in ESCC tissues.Collectively, this study elucidates that RAD6 is up-regulated in ESCC and promotes the progression of ESCC through up-regulation of CCNB1 to enhance H2B ubiquitination. These evidence provide a novel insight into the pathogenesis of ESCC and might contribute to the development of targeted therapy.

20.
Chemosphere ; 291(Pt 1): 132843, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767847

RESUMO

Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.


Assuntos
Biocombustíveis , Dióxido de Carbono , Reatores Biológicos , Dióxido de Carbono/análise , Hidrogênio , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...