Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Liver Int ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037193

RESUMO

BACKGROUND AND AIMS: Distinctive gut microbial profiles have been observed between patients with Wilson disease (WD) and healthy individuals. Despite this, the exact relationship and influence of gut microbiota on the advancement of WD-related liver damage remain ambiguous. This research seeks to clarify the gut microbiota characteristics in both human patients and mouse models of WD, as well as their impact on liver injury. METHODS: Gut microbial features in healthy individuals, patients with WD, healthy mice and mice with early- and late-stage WD were analysed using 16S rRNA gene sequencing. Additionally, WD-afflicted mice underwent treatment with either an antibiotic cocktail (with normal saline as a control) or healthy microbiota (using disease microbiota as a control). The study assessed gut microbiota composition, hepatic transcriptome profiles, liver copper concentrations and hepatic pathological injuries. RESULTS: Patients with hepatic WD and mice with WD-related liver injury displayed altered gut microbiota composition, notably with a significant reduction in Lactobacillus abundance. Additionally, the abundances of several gut genera, including Lactobacillus, Veillonella and Eubacterium coprostanoligenes, showed significant correlations with the severity of liver injury in patients with WD. In WD mice, antibiotic treatment or transplantation of healthy microbiota altered the gut microbial structure, increased Lactobacillus abundance and modified the hepatic transcriptional profile. These interventions resulted in reduced hepatic copper concentration and alleviation of WD-related liver injury. CONCLUSIONS: Individuals and mice with pronounced WD-related liver injury exhibited shifts in gut microbial composition. Regulating gut microbiota through healthy microbiota transplantation emerges as a promising therapeutic approach for treating WD-related liver injury.

2.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945954

RESUMO

Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/ß-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.

3.
PLoS One ; 19(1): e0296025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165852

RESUMO

The most serious type of coronary artery disease (CAD), acute myocardial infarction (AMI), is a major global cause of death. The development of AMI is accompanied by several risk factors. AMI may be caused by variations in the microRNA (miRNA) genes, which have a negative impact on miRNA-mediated regulation of gene expression. The target mRNAs are dysregulated because of these genetic changes in the miRNA genes, which interfere with the vital biological processes that result in AMI. Using allele-specific PCR, the aim of the study is to examine the association of the variants (rs2910164, rs4636297, and rs895819) in MIR146A, MIR126, and MIR27A with AMI susceptibility. A difference in genotype distribution among the patients and control for variation rs2910164 was identified by co-dominant [χ2 = 68.34,2; P value<0.0001], dominant (G/G vs G/C + C/C) [OR = 4.167 (2.860-6.049); P value<0.0001], recessive (C/C vs G/C + G/G) [OR = 0.2584 (0.1798-0.3731); P value<0.0001], and additive models [OR = 3.847 (2.985-4.959); P value<0.0001]. Whereas the association of rs4636297 was investigated by co-dominant [χ2 = 6.882,2; P value = 0.0320], dominant (G/G vs G/A + A/A) [OR = 0.6914 (0.4849-0.9948); P value = 0.0489], recessive (A/A vs A/G + G/G) [OR = 2.434 (0.9849-5.616830); P value = 0.0595], and additive models [OR = 0.7716 (0.6000-0.9918); P value = 0.0433]. Similarly, association of rs895819 was determined by co-dominant [χ2 = 5.277, 2; P value = 0.0715], dominant (G/G vs G/A + A/A) [OR = 1.654(0.9819-2.801); P value = 0.06440], recessive (A/A vs A/G + G/G) [OR = 0.7227 (0.5132-1.022); P value = 0.0748], and additive models [OR = 1.3337 (1.041-1.719); P value = 0.0233]. The results of this study found a significant association of rs2910164 and rs4636297 with AMI and are considered as the risk factor for AMI in the Pakistani population. We observed no significant association of the variant MIR27A (rs895819) with AMI incidence.


Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , Predisposição Genética para Doença , Paquistão , Polimorfismo de Nucleotídeo Único , MicroRNAs/genética , Infarto do Miocárdio/genética , Estudos de Casos e Controles
4.
Recent Pat Anticancer Drug Discov ; 19(2): 126-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37287306

RESUMO

mRNA emerged as an attractive therapy modality with the development of mRNA structure engineering techniques and delivery platforms. mRNA therapeutics, applied for vaccine therapy, protein replacement therapy, and chimeric antigen receptor (CAR) T cell-based therapy, has shown huge potential in treating a wide range of diseases, such as cancer and rare genetic diseases, with successful and exciting preclinical and clinical progress. In mRNA therapeutics, a potent delivery system is key to the success of its application for disease treatment. Herein, different types of mRNA delivery strategies, including nanoparticles produced from lipid or polymer materials, virus-based platforms, and exosome-based platforms, are mainly focused.


Assuntos
Nanopartículas , Neoplasias , Humanos , RNA Mensageiro/genética , Lipídeos , Neoplasias/genética , Neoplasias/terapia , Terapia Genética/métodos
5.
Acta Pharmacol Sin ; 45(2): 422-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816856

RESUMO

Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Simulação por Computador , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Linhagem Celular Tumoral
6.
Cell Death Dis ; 14(11): 767, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007473

RESUMO

Due to a lack of research on the critical non-coding RNAs in regulating ferroptosis, our study aimed to uncover the crucial ones involved in the process. We found that LINC01133 could make pancreatic cancer cells more resistant to ferroptosis. A higher expression of LINC01133 was associated with a higher IC50 of sorafenib in clinical samples. Furthermore, we discovered that LINC01133 induced this process through enhancing the mRNA stability of FSP1. CEBPB was the transcription factor to increase the expression of LINC01133. A higher CEBPB could also indicate a higher IC50 of sorafenib in patients with cancer. Moreover, we confirmed that LINC01133 could form a triple complex with FUS and FSP1 to increase the mRNA stability of FSP1.


Assuntos
Ferroptose , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Ferroptose/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , Proteína FUS de Ligação a RNA/metabolismo , Sorafenibe/farmacologia
7.
Gerontology ; 69(12): 1414-1423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37857262

RESUMO

INTRODUCTION: Telomere length (TL) is generally regarded as a biomarker of aging. TL, which is influenced by sociodemographic factors, has been shown to be inversely associated with morbidity. However, most studies examined the youngest, and whether the findings can be extended to older individuals is less clear. Further, few studies have examined these questions in Chinese older adults. This cross-sectional study examined TL and its associated factors in Chinese aged 75+ years in Hong Kong. METHODS: Participants were from the Mr. and Ms. Osteoporosis cohort. A structured interview on sociodemographic factors and physical measurement was conducted. Frailty and sarcopenia status were respectively determined by Fried's criteria and the Asian Working Group for Sarcopenia definition. TL was measured by a molecular inversion probe-quantitative PCR assay and expressed as a novel telomere/a single copy reference gene (T/S) ratio. Adjusted binary logistic regressions were used to examine the associations between TL and the presence of multimorbidity, age-related diseases, frailty, and sarcopenia. RESULTS: Among 555 participants (mean age 83.6 ± 3.8 years, 41.3% females), the mean T/S ratio was 1.01 ± 0.20. Males had a lower T/S ratio (0.97 ± 0.20) compared with females (1.07 ± 0.18) (p < 0.001). A lower education level was related to a longer TL (p = 0.016). Being a current smoker was related to a shorter TL (p = 0.007). TL was not significantly different across categories of age, subjective socioeconomic status, drinking status, physical activity level, and body mass index (p > 0.05). There were no associations between TL and the presence of multimorbidity, diabetes, stroke, cardiovascular diseases, cognitive impairment, frailty, and sarcopenia. CONCLUSION: Among Chinese aged 75+ years, males had shorter TL compared with females. TL was not associated with age-related diseases, frailty, and sarcopenia in this age group. TL may not be a biological marker of aging among older individuals.


Assuntos
Fragilidade , Sarcopenia , Masculino , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Sarcopenia/epidemiologia , Sarcopenia/genética , Fragilidade/epidemiologia , Fragilidade/genética , Estudos Transversais , População do Leste Asiático , Biomarcadores , Telômero/genética , Encurtamento do Telômero
8.
Biomark Res ; 11(1): 74, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553583

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS: We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS: We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION: Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.

9.
Lifestyle Genom ; 16(1): 139-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369185

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) are a new class of molecules that participate in post-transcriptional regulation of gene expression and hence have been reported to have a crucial role in the pathogenesis of rheumatoid arthritis (RA). We aimed to investigate the association of miR-146a rs2910164 (G/C) and miR-196a2 rs185070757 (T/G) with RA susceptibility in Pakistani patients and to bioinformatically predict the molecular function of these miRNAs. METHODS: A case-control study on 600 individuals was conducted, including 300 RA patients and 300 matching healthy controls. Genotyping was performed by tetra-primer amplification of refractory mutation system-polymerase chain reaction, and the association between variants and RA was statistically determined using different models. RESULTS: For the variant rs2910164 (G/C) in miR-146a, no difference in genotype distribution was observed between RA cases and controls, as determined using co-dominant (χ2 = 4.33; p = 0.114), homozygous dominant (C/C vs. G/G + C/G) (OR = 0.740 [0.531-1.032]; p = 0.091), homozygous recessive (G/G vs. C/C + G/C) (odds ratio [OR] = 01.432 [0.930-2.206]; p = 0.126), heterozygous (G/C vs. C/C + G/G) (OR = 1.084 [0.786-1.494]; p = 0.682), and additive (OR 0.778 [0.617-0.981]; p = 0.039) models. Similarly, the GT genotype in the rs185070757 (T/G) miR-196a2 variant did not differ between cases and controls with any models (p > 0.05). For the first time, we report no association of miR-146a rs2910164 (G/C) and miR-196a2 rs185070757 (T/G) with RA in a Pakistani population. A subsequent bioinformatic analysis revealed that the CC genotype of miR-146a rs2910164 might have a protective role against RA pathogenesis, with no effect observed with the miR-196a2 rs185070757. CONCLUSION: Our findings suggest that these miRNAs might have little-to-no impact on the RA pathogenesis in the Pakistani population.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , MicroRNAs/genética , Paquistão , Polimorfismo de Nucleotídeo Único , População do Sul da Ásia/genética
10.
Genes (Basel) ; 14(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36833357

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) are small non-coding RNAs that play a key role in post-transcriptional modulation of individual genes' expression. Several miRNA variants from different populations are known to be associated with an increased risk of rheumatoid arthritis (RA). AIM: This study was undertaken with the aim to investigate the association of single nucleotide variants; namely, rs2292832, rs3746444, rs11614913, rs1044165, and rs767649 of MIR149, MIR499, MIR196, MIR223, and MIR155, respectively, with RA in the Pakistani population. METHODS: A case-control study was performed by recruiting and genotyping a total of 600 individuals (300 cases and 300 controls) for these five variants using a TaqMan single-nucleotide polymorphism (SNP) genotyping assay. The resultant genotypic data was statistically analyzed through a chi-squared test for its association with RA under different inheritance models. RESULTS: We found a significant association of rs2292832 with RA at genotypic (co-dominant (p < 0.0001), dominant (CC vs. TT + CT: OR 2.063 (1.437-2.962); p = 0.0001), recessive (TT vs. CT + CC: OR 0.376 (0.259-0.548); p < 0.0001)), and allelic (allele C) levels ((OR 0.506 (0.402-0637); p < 0.0001)). Similarly, the rs3746444 showed a significant association with RA under co-dominant (p = 0.0001), dominant (GG vs. AA + AG: OR 5.246 (3.414-8.061); p < 0.0001), recessive (AA vs. GG + AG: OR 0.653 (0.466-0.916); p = 0.014), and additive models (G vs. A; OR 0.779 (0.620-0.978); p = 0.03). However, we did not observe any significant association of rs11614913, rs1044165, or rs767649 with RA in our subjects. CONCLUSION: To our knowledge, this was the first study that investigated and found an association between functional polymorphisms in miRNAs and RA in the Pakistani population.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , Predisposição Genética para Doença , Estudos de Casos e Controles , MicroRNAs/genética , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único
11.
Int J Biochem Cell Biol ; 156: 106364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639095

RESUMO

Circular RNAs (CircRNAs) regulate gene expression by functioning as microRNA sponges, regulating protein stability, and gilding proteins for gene transcription and translation. Also, limited circRNAs harbour protein-coding ability through cap-independent pathways. These molecular mechanisms of circRNAs contribute to their importance in several cellular processes. Particularly, the dysregulation of circRNAs also plays a critical role in disease development. Targeting disease-causing circRNAs by restoring their normal expression by gain-of-function or loss-of-function approach and regulating their molecular activities could be potential direction for the development of anti-cancer therapies. Furthermore, due to unique covalently closed circular structure, the superior stability of circRNAs also grants them as novel therapeutic tools replacing the therapeutic small interfering RNAs and messenger RNAs. Here, we will review the functional and molecular mechanisms of circRNAs in pathogenesis, the current methods for targeting the dysregulated circRNAs, and the potential of using synthetic circRNAs in disease treatment and prevention.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA/genética , RNA/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias/genética , Neoplasias/terapia , MicroRNAs/genética , RNA Mensageiro/genética , RNA Interferente Pequeno
12.
Pharmacol Ther ; 239: 108276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055421

RESUMO

Digestive system cancers account for nearly half of all cancers around the world and have a high mortality rate. Cell culture and animal models represent cornerstones of digestive cancer research. However, their ability to enable cancer precision medicine is limited. Cell culture models cannot retain the genetic and phenotypic heterogeneity of tumors and lack tumor microenvironment (TME). Patient-derived xenograft mouse models are not suitable for immune-oncology research. While humanized mouse models are time- and cost-consuming. Suitable preclinical models, which can facilitate the understanding of mechanisms of tumor progression and develop new therapeutic strategies, are in high demand. This review article summarizes the recent progress on the establishment of TME by using tumor organoid models and microfluidic systems. The main challenges regarding the translation of organoid models from bench to bedside are discussed. The integration of organoids and a microfluidic platform is the emerging trend in drug screening and precision medicine. A future prospective on this field is also provided.


Assuntos
Neoplasias do Sistema Digestório , Neoplasias Gastrointestinais , Humanos , Animais , Camundongos , Medicina de Precisão , Organoides/patologia , Microambiente Tumoral , Neoplasias Gastrointestinais/patologia , Neoplasias do Sistema Digestório/patologia
13.
Transl Lung Cancer Res ; 11(7): 1380-1393, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958330

RESUMO

Background: Small cell lung cancer (SCLC) is an aggressive lung malignancy with high relapse rates and poor survival outcomes. Ferroptosis is a recently identified type of cell death caused by excessive intracellular iron accumulation and lipid peroxidation, which may mediate tumor-infiltrating immune cells to influence anti-cancer immunity. But prognostic value of ferroptosis-related genes and its relationship with the treatment response of immunotherapies in SCLC have not been elucidated. Methods: The RNA-sequencing and clinical data of SCLC patients were downloaded from the cBioPortal database. A ferroptosis-related prognostic risk-scoring model was constructed based on univariable and multivariable Cox-regression analysis. Kaplan-Meier (K-M) survival curves and receiver operating characteristics (ROC) curves were constructed to assess the sensitivity and specificity of the risk-scoring model. And the correlations between ferroptosis-related prognostic genes and immune microenvironment were explored. The IC50 values of anti-cancer drugs were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) database and the correlation analysis with the key gene thioredoxin-interacting protein (TXNIP) was performed. In addition, immunohistochemistry (IHC) staining was employed to detect the expression of TXNIP in 20 SCLC patients who received first-line chemo-immunotherapy. Immunotherapeutic response according to iRECIST (Response Evaluation Criteria in Solid Tumours for immunotherapy trials) were recorded. Results: We constructed a risk-score successfully dividing patients in the low- and high-risk groups (with better and worse prognosis, respectively). The area under the curve (AUC) of this risk-scoring model was 0.812, showing it had good utility in predicting the prognosis of SCLC. Moreover, ferroptosis-related genes were associated with the degree of immune infiltration of SCLC. Most importantly, we found that the TXNIP expression was highly correlated with the degree of immune invasion and the efficacy of chemotherapy in combination with immunotherapy in SCLC patients. Conclusions: The ferroptosis-related prognostic risk-scoring model proposed in this study can potentially predict the prognosis of SCLC patients. TXNIP may serve as a potential biomarker to predict the prognosis and efficacy of chemotherapy combined with immunotherapy in SCLC patients.

14.
Genes (Basel) ; 13(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35627132

RESUMO

Genetic variants in microRNA genes have a detrimental effect on miRNA-mediated regulation of gene expression and may contribute to coronary artery disease (CAD). CAD is the primary cause of mortality worldwide. Several environmental, genetic, and epigenetic factors are responsible for CAD susceptibility. The contribution of protein-coding genes is extensively studied. However, the role of microRNA genes in CAD is at infancy. The study is aimed to investigate the impact of rs895819, rs11614913, and rs2168518 variants in MIR27A, MIR196A2, and MIR4513, respectively, in CAD using allele-specific PCR. Results: For variant rs11614913, significant distribution of the genotypes among the cases and controls was determined by co-dominant [χ2 = 54.4; p value ≤ 0.0001], dominant (C/C vs. C/T + T/T) [OR = 0.257 (0.133-0.496); p value ≤ 0.0001], recessive (T/T vs. C/T + C/C) [OR = 1.56 (0.677-0.632); p value = 0.398], and additive models [OR = 0.421 (0.262-0.675); p value = 0.0004]. Similarly, a significant association of rs895819 was determined by co-dominant [χ2 = 9.669; p value ≤ 0.008], dominant (A/A vs. A/G + G/G) [OR = 0.285 (0.1242-0.6575); p value ≤ 0.0034], recessive (G/G vs. A/G + A/A) [OR = 0.900 (0.3202-3.519); p value = 1.000], and additive models [OR = 0.604 (0.3640-1.002); p value = 0.05] while no significant association of rs2168518 with CAD was found. Conclusion: The variants rs895819 and rs11614913 are the susceptibility factors for CAD.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Humanos , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença , MicroRNAs/genética , Paquistão , Polimorfismo de Nucleotídeo Único
15.
J Hematol Oncol ; 15(1): 53, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526007

RESUMO

BACKGROUND: Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs. Recent studies suggest that tRFs participate in some pathological processes. However, the biological functions and mechanisms of tRFs in non-small cell lung cancer (NSCLC) are largely unknown. METHODS: Differentially expressed tRFs were identified by tRF and tiRNA sequencing using 9 pairs of pre- and post-operation plasma from patients with NSCLC. Quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) were used to determine the levels of tRF in tissues, plasma, and cells. Gain- and loss-of-function experiments were implemented to investigate the oncogenic effects of tRF on NSCLC cells in vitro and in vivo. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation (RIP), Western blot, co-immunoprecipitation (Co-IP) assays, and rescue experiments were performed to explore the regulatory mechanisms of tRF in NSCLC. RESULTS: AS-tDR-007333 was an uncharacterized tRF and significantly up-regulated in NSCLC tissues, plasma, and cells. Clinically, AS-tDR-007333 overexpression could distinguish NSCLC patients from healthy controls and associated with poorer prognosis of NSCLC patients. Functionally, overexpression of AS-tDR-007333 enhanced proliferation and migration of NSCLC cells, whereas knockdown of AS-tDR-007333 resulted in opposite effects. Mechanistically, AS-tDR-007333 promoted the malignancy of NSCLC cells by activating MED29 through two distinct mechanisms. First, AS-tDR-007333 bound to and interacted with HSPB1, which activated MED29 expression by enhancing H3K4me1 and H3K27ac in MED29 promoter. Second, AS-tDR-007333 stimulated the expression of transcription factor ELK4, which bound to MED29 promoter and increased its transcription. Therapeutically, inhibition of AS-tDR-007333 suppressed NSCLC cell growth in vivo. CONCLUSIONS: Our study identifies a new oncogenic tRF and uncovers a novel mechanism that AS-tDR-007333 promotes NSCLC malignancy through the HSPB1-MED29 and ELK4-MED29 axes. AS-tDR-007333 is a potential diagnostic or prognostic marker and therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Chaperonas Moleculares , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Elk-4 do Domínio ets/genética , Proteínas Elk-4 do Domínio ets/metabolismo
16.
Front Oncol ; 12: 773654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402237

RESUMO

Approximately 85% of lung cancer cases are non-small-cell lung cancer (NSCLC). Chemoresistance is a leading cause of chemotherapy failure in NSCLC treatment. Transient receptor potential cation channel subfamily V, member 1 (TRPV1), a non-selective cation channel, plays multiple roles in tumorigenesis and tumor development, including tumor cell proliferation, death, and metastasis as well as the response to therapy. In this study, we found TRPV1 expression was increased in NSCLC. TRPV1 overexpression induced cisplatin (DDP) and fluorouracil (5-FU) resistance in A549 cells independent of its channel function. TRPV1 expression was upregulated in A549-DDP/5-FU resistant cells, and DDP/5-FU sensitivity was restored by TRPV1 knockdown. TRPV1 overexpression mediated DDP and 5-FU resistance by upregulation of ABCA5 drug transporter gene expression, thereby increasing drug efflux, enhancing homologous recombination (HR) DNA repair pathway to alleviate apoptosis and activating IL-8 signaling to promote cell survival. These findings demonstrate an essential role of TRPV1 in chemoresistance in NSCLC and implicate TRPV1 as a potential chemotherapeutic target.

17.
Mol Ther ; 30(4): 1597-1609, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121112

RESUMO

Long non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles. Importantly, since HOTAIR heavily contributes to cancer progression by promoting tumor growth and metastasis, HOTAIR becomes a potential target for cancer therapy. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we performed a pan-cancer analysis using more than 4,200 samples and found that intragenic exon CpG island (Ex-CGI) was hypermethylated and was positively correlated to HOTAIR expression. Also, we revealed that Ex-CGI methylation promotes HOTAIR expression through enhancing the transcription elongation process. Furthermore, we linked up the aberrant intragenic tri-methylation on H3 at lysine 4 (H3K4me3) and Ex-CGI DNA methylation in promoting transcription elongation of HOTAIR. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis downregulated HOTAIR expression and inhibited cell growth in many cancers. To our knowledge, this is the first time that a positive feedback loop that involved CDK9-mediated phosphorylation of RNA Polymerase II Serine 2 (RNA PolII Ser2), H3K4me3, and intragenic DNA methylation, which induced robust transcriptional elongation and heavily contributed to the upregulation of oncogenic lncRNA in cancer has been demonstrated. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis could be a novel therapy in many cancers through inhibiting the HOTAIR expression.


Assuntos
Quinase 9 Dependente de Ciclina , Histonas , Neoplasias , RNA Polimerase III , RNA Longo não Codificante , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Metilação de DNA , Retroalimentação Fisiológica/fisiologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Polimerase III/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Mol Cancer ; 21(1): 10, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983537

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play important roles in many biological processes. However, the detailed mechanism underlying the critical roles of circRNAs in cancer remains largely unexplored. We aim to explore the molecular mechanisms of circRTN4 with critical roles in pancreatic ductal adenocarcinoma (PDAC). METHODS: CircRTN4 expression level was examined in PDAC primary tumors. The oncogenic roles of circRTN4 in PDAC tumor growth and metastasis were studied in mouse tumor models. Bioinformatics analysis, luciferase assay and miRNA pulldown assay were performed to study the novel circRTN4-miRNA-lncRNA pathway. To identify circRTN4-interacting proteins, we performed circRNA-pulldown and mass spectrometry in PDAC cells. Protein stability assay and 3-Dimensional structure modeling were performed to reveal the role of circRTN4 in stabilizing RAB11FIP1. RESULTS: CircRTN4 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional studies revealed that circRTN4 promoted PDAC tumor growth and liver metastasis. Mechanistically, circRTN4 interacted with tumor suppressor miR-497-5p in PDAC cells. CircRTN4 knockdown upregulated miR-497-5p to inhibit the oncogenic lncRNA HOTTIP expression. Furthermore, we identified critical circRTN4-intercting proteins by circRNA-pulldown in PDAC cells. CircRTN4 interacted with important epithelial-mesenchymal transition (EMT)- driver RAB11FIP1 to block its ubiquitination site. We found that circRTN4 knockdown promoted the degradation of RAB11FIP1 by increasing its ubiquitination. Also, circRTN4 knockdown inhibited the expression of RAB11FIP1-regulating EMT-markers Slug, Snai1, Twist, Zeb1 and N-cadherin in PDAC. CONCLUSION: The upregulated circRTN4 promotes tumor growth and liver metastasis in PDAC through the novel circRTN4-miR-497-5p-HOTTIP pathway. Also, circRTN4 stabilizes RAB11FIP1 to contribute EMT.


Assuntos
Transição Epitelial-Mesenquimal , MicroRNAs/genética , Proteínas Nogo/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , RNA Circular , RNA Longo não Codificante/genética , Adulto , Idoso , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Interferência de RNA
19.
Int J Biol Sci ; 17(8): 2034-2049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131404

RESUMO

The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a transmembrane protein that can be activated by various physical and chemical stimuli and is associated with pain transduction. In recent years, TRPV1 was discovered to play essential roles in cancer tumorigenesis and development, as TRPV1 expression levels are altered in numerous cancer cell types. Several investigations have discovered direct associations between TRPV1 and cancer cell proliferation, cell death, and metastasis. Furthermore, about two dozen TRPV1 agonists/antagonists are under clinical trial, as TRPV1 is a potential drug target for treating various diseases. Hence, more researchers are focusing on the effects of TRPV1 agonists or antagonists on cancer tumorigenesis and development. However, both agonists and antagonists may reveal anti-cancer effects, and the effect may function via or be independent of TRPV1. In this review, we provide an overview of the impact of TRPV1 on cancer cell proliferation, cell death, and metastasis, as well as on cancer therapy and the tumor microenvironment, and consider the implications of using TRPV1 agonists and antagonists for future research and potential therapeutic approaches.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese , Neoplasias , Canais de Cátion TRPV , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Desenvolvimento de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
20.
Genet Res (Camb) ; 2021: 5544198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104118

RESUMO

Rheumatoid arthritis (RA) is one of the complex diseases with the involvement of the genetic as well as environmental factors in its onset and severity. Different genome-wide association and candidate gene studies have shown the role of several genetic variants in multiple loci/genes with ethnical and geographical variations. This study was designed to detect the association of a single-nucleotide polymorphism (SNP) rs10865035 in the AFF3 gene with the genetic background of rheumatoid arthritis (RA) in the Pakistani cohort. A total of 703 individuals, including 409 RA patients and 294 healthy controls, were genotyped using TaqMan assay and Tri primer ARMS-PCR (amplification-refractory mutation system-polymerase chain reaction) methods. The association of rs10865035 with the RA was statistically determined using different models. Interestingly, besides the homozygous recessive model (G/G vs. A/G + A/A) (OR = 1.693(1.06-2.648); P = 0.025), all other models, which included the codominant (χ 2 = 5.169; P = 0.075), homozygous dominant (A/A vs. G/G + A/G) (OR = 0.867 (0.636-1.187); P = 0.41), heterozygous (A/G vs. A/A + GG) (OR = 0.491 (0.667-1.215); P = 0.49), and additive model (OR = 0.826 (0.665-1.027); P = 0.08) showed insignificant distribution of the genotypes among the cases and controls. These findings suggest that the AFF3 gene (rs10865035) has no significant role in the onset of RA in the Pakistani population.


Assuntos
Artrite Reumatoide , Estudo de Associação Genômica Ampla , Artrite Reumatoide/genética , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Genótipo , Humanos , Proteínas Nucleares , Paquistão , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA