Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135433, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146584

RESUMO

Sunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X-ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress.

2.
Plant Foods Hum Nutr ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153161

RESUMO

Chickpea is rich in protein and has been demonstrated to possess hypoglycaemic effects. However, the specific bioactive ingredients and mechanisms underlying their hypoglycaemic effects remain unclear. In this study, enzymatic hydrolysis and gel permeation chromatography were used to extract chickpea bioactive peptide (CBP) from chickpea protein. One of the products, CBP-75-3, was found to inhibit α-glucosidase (GAA) activity and significantly increase the viability of insulin resistant (IR) cells. Moreover, CBP-75-3 significantly increased the rate of glucose consumption and glycogen synthesis in IR-HepG2 cells. Moreover, CBP-75-3 decreased the levels of malondialdehyde and increased the levels of superoxide dismutase, glutathione, and glutathione peroxidase. Subsequently, 29 novel bioactive peptides in CBP-75-3 were identified by LC‒MS/MS, and the potential hypoglycaemic targets of these novel bioactive peptides were investigated using molecular docking. Based on the results, the residues of the novel bioactive peptides interact with GAA through hydrogen bonding (especially LLR, FH, RQLPR, KGF and NFQ by binding to the substrate binding pocket or the active centre of GAA), thereby inhibiting GAA activity and laying a foundation for its hypoglycaemic activity. In short, the novel bioactive peptides isolated and identified from chickpea can effectively exert hypoglycaemic effects and increase the antioxidant capacity of IR-HepG2 cells. This study reveals that CBP-75-3, a natural hypoglycaemic ingredient, has potential for applications in functional foods and provides a theoretical basis for the development and application of CBP in the future.

3.
Drug Des Devel Ther ; 18: 1833-1853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828018

RESUMO

Purpose: Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods: This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results: Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1ß, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion: This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Quimiocina CXCL10 , Neoplasias do Colo , Camundongos Endogâmicos BALB C , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Membrana Externa Bacteriana/imunologia , Membrana Externa Bacteriana/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Neoplasias Experimentais/patologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Células Tumorais Cultivadas
4.
J Hazard Mater ; 472: 134563, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735186

RESUMO

Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have been raising global concerns due to their toxic effects on environment and human health. The monitoring of residues of POPs in seafood is crucial for assessing the accumulation of these contaminants in the study area and mitigating potential risks to human health. However, the diversity and complexity of POPs in seafood present significant challenges for their simultaneous detection. Here, a novel multi-component fluoro-functionalized covalent organic framework (OH-F-COF) was designed as SPE adsorbent for simultaneous extraction POPs. On this basis, the recognition and adsorption mechanisms were investigated by molecular simulation. Due to multiple interactions and large specific surface area, OH-F-COF displayed satisfactory coextraction performance for PFASs, PCBs, and BPs. Under optimized conditions, the OH-F-COF sorbent was employed in a strategy of simultaneous extraction and stepwise elution (SESE), in combination with HPLC-MS/MS and GC-MS method, to effectively determined POPs in seafood collected from coastal areas of China. The method obtained low detection limits for BPs (0.0037 -0.0089 ng/g), PFASs (0.0038 -0.0207 ng/g), and PCBs (0.2308 -0.2499 ng/g), respectively. This approach provided new research ideas for analyzing and controlling multitarget POPs in seafood. ENVIRONMENTAL IMPLICATIONS: Persistent organic pollutants (POPs), such as perfluoroalkyl and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), and bisphenols (BPs), have caused serious hazards to human health and ecosystems. Hence, there is a need to develop a quantitative method that can rapidly detect POPs in environmental and food samples. Herein, a novel multi-component fluorine-functionalized covalent organic skeletons (OH-F-COF) were prepared at room temperature, and served as adsorbent for POPs. The SESE-SPE strategy combined with chromatographic techniques was used to achieve a rapid detection of POPs in sea foods from the coastal provinces of China. This method provides a valuable tool for analyzing POPs in environmental and food samples.


Assuntos
Contaminação de Alimentos , Alimentos Marinhos , Extração em Fase Sólida , Alimentos Marinhos/análise , Extração em Fase Sólida/métodos , Adsorção , Contaminação de Alimentos/análise , Poluentes Químicos da Água/análise , Poluentes Orgânicos Persistentes/química , Estruturas Metalorgânicas/química , Fenóis/análise , Fenóis/isolamento & purificação , Bifenilos Policlorados/análise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Animais
5.
J Chromatogr A ; 1728: 465014, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38797135

RESUMO

Developing novel chiral stationary phases (CSPs) with versatility is of great importance in enantiomer separation. This study fabricated a dual-chiral covalent organic framework (PA-CA COF) via successive post-synthetic modifications. The chiral trans-1,2-cyclohexanediamine (CA) and (D)-penicillamine (PA) groups were periodically aligned within nanochannels of the COF, allowing selective recognition of enantiomers through intermolecular interactions. It can be a versatile high-performance liquid chromatography (HPLC) CSP for separating a wide range of enantiomers, including chiral pharmaceutical intermediates and chiral drugs. With separation performance comparable to commercial chiral columns and even greater versatility, the PA-CA COF@SiO2 column held promise for practical applications. Chiral separation results combined with molecular simulation indicated that the mixed mode of PA and CA resulted in the broad separation capability of PA-CA COF. The introduction of the dual-chiral COFs concept opens up a new avenue for chiral recognition and separation, holding great potential for practical enantiomer separation.


Assuntos
Penicilamina , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos , Penicilamina/química , Penicilamina/isolamento & purificação , Cicloexilaminas/química , Cicloexilaminas/isolamento & purificação , Dióxido de Silício/química , Estruturas Metalorgânicas/química
6.
J Hazard Mater ; 471: 134355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38643583

RESUMO

Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.


Assuntos
Bactérias , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Aerobiose , Anaerobiose , Farmacorresistência Bacteriana/genética
7.
Food Chem ; 447: 139016, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513494

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are extensively found in foods, posing potential toxicity to humans. Therefore, rapid analysis and monitoring of PFASs in foods are crucial for public health and also a challenge. To detect trace PFASs in foods, construction of sorbents with multiple interactions could be an effective approach. Herein, a cationic-fluorinated covalent organic framework (CF-COF) was prepared by post-modification and used as a magnetic solid-phase extraction adsorbent for adsorption of PFASs. By combining magnetic solid-phase extraction based on CF-COF with liquid chromatography-tandem mass spectrometry (LC - MS/MS), a novel method was developed for determination of eight long-chain PFASs in foods. Under optimized conditions, the method exhibited low detection limits (0.003-0.019 ng/g) and satisfactory recovery rates (73.5-118%) for PFASs. This study introduces a novel idea for the development of adsorbents targeting PFASs, along with a new analytical method for monitoring of PFASs in foods.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Humanos , Espectrometria de Massas em Tandem/métodos , Estruturas Metalorgânicas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Extração em Fase Sólida/métodos , Fluorocarbonos/análise , Limite de Detecção
8.
Anal Chem ; 96(3): 1380-1389, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197385

RESUMO

In enantiomer recognition and separation, a highly enantioselective approach with universal applicability is urgently desired but hard to realize, especially in the case of chiral molecules. To resolve the trade-off between enantioselectivity and universality, a glutathione (GSH) and methylated cyclodextrins (MCD)-functionalized covalent organic framework (GSH-MCD COF) with porosity and abundant chiral surfaces is presented that was designed and synthesized for recognition and separation of various enantiomers. As expected, the GSH-MCD COF can be used as chiral stationary phases for the separation of various enantiomers, including aromatic alcohols, aromatic acids, amides, amino acids, and organic acids, with performance and versatility even superior to some widely used commercial chiral chromatographic columns. Furthermore, the synthesized GSH-MCD COF shows high enantioselectivity for the rapid recognition and identification of enantiomers and chiral metabolites when coupling to Raman spectroscopy. Molecular simulations suggest that the COF provides a confined microenvironment for cyclodextrins and peptides that dictates the separation and recognition capability. This work provides a strategy to synthesize synergetic multichiral COF and achieve separations and recognitions of enantiomers in complex samples.

9.
Front Microbiol ; 15: 1302998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292253

RESUMO

Lactobacillus acidophilus (LA) is a common clinical probiotic that improves ulcerative colitis (UC) by restoring intestinal immune balance. However, the interaction of LA with the gut microbiota and its metabolites in the treatment of UC remains unknown. Therefore, this study seeks to elucidate whether the gut microbiota and its metabolites act as pivotal effectors in LA's therapeutic mechanisms and how precisely they modulate intestinal immunity. In this study, we verified that LA can obviously ameliorate the disease severity, and regulate intestinal immune disorders in UC mice. Subsequently, antibiotic (ABX)-mediated depletion of the gut microflora demonstrated that the therapeutic efficiency of LA was closely associated with gut microbiota. In addition, the results of metabolomics revealed that ursodeoxycholic acid (UDCA), a metabolite of intestinal flora, may be a potential effector molecule mediating therapeutic effects of LA. Indeed, we found that UDCA can improve the macro pathological characteristics of UC mice, and through a comprehensive set of in vivo and in vitro experiments, we discovered that UDCA exerts dual effects on immune regulation. Firstly, it promotes the differentiation of Treg cells, resulting in increased secretion of anti-inflammatory cytokines. Secondly, UDCA inhibits the polarization of M1 macrophages, effectively reducing the secretion of pro-inflammatory cytokines. Moreover, we found that UDCA regulation of immune response is directly related to the RapGap/PI3K-AKT/NF-κB signaling pathway. In conclusion, LA and its metabolite, UDCA, may treat UC by activating the RapGap/PI3K-AKT/NF-κB signaling pathway and modulating Treg cells and M1 macrophages. All in all, our findings highlight the potential of microbial metabolites in enhancing probiotic for UC treatment.

10.
J Hazard Mater ; 465: 133084, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039811

RESUMO

Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel ß-cyclodextrin (ß-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of ß-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Naftalenos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Fluorocarbonos/análise
11.
Fitoterapia ; 172: 105750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977304

RESUMO

Although chickpea have great potential in the treatment of obesity and diabetes, the bioactive components and therapeutic targets of chickpea to prevent insulin resistance (IR) are still unclear. The purpose of this study was to investigate the chemical and pharmacological characteristics of chickpea on IR through serum pharmacochemistry and network pharmacology. The results revealed that compared with other polar fractions, the ethyl acetate extract of chickpea (CE) had the definitive performance on enhancing the capacities of glucose consumption and glycogen synthesis. In addition, we analyzed the components of CE in vivo and in vitro based on UPLC-Q-Orbitrap HRMS technology. There were 28 kinds of in vitro chemical components, among which the isoflavones included biochanin A, formononetin, ononin, sissotrin, and astragalin, etc. Concerningly, the chief prototype components of CE absorbed into the blood were biochanin A, formononetin, loliolide, and lenticin, etc. Furthermore, a total of 209 common targets between IR and active components of CE were screened out by network pharmacology, among which the key targets involved PI3K p85, NF-κB p65 and estrogen receptor 1, etc. Specifically, KEGG pathway analysis indicated that PI3K-AKT signaling pathway, HIF-1 signaling pathway, and AGE-RAGE signaling pathway may play critical roles in the IR remission by CE. Finally, the in vitro validation experiments disclosed that CE significantly balanced the oxidative stress state of IR-HepG2 cells and inhibited expressions of inflammatory cytokines. In conclusion, the present study will be an important reference for clarifying the pharmacodynamic substance basis and underlying mechanism of chickpea to alleviate IR.


Assuntos
Cicer , Medicamentos de Ervas Chinesas , Resistência à Insulina , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Estrutura Molecular , Simulação de Acoplamento Molecular
12.
Environ Int ; 183: 108394, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128385

RESUMO

Heavy metal in soil have been shown to be toxic with high concentrations and acts as selective pressure on both bacterial metal and antibiotic resistance determinants, posing a serious risk to public health. In cadmium (Cd) and zinc (Zn) contaminated soil, chitosan (Chi) and Trichoderma harzianum (Tri) were applied alone and in combination to assist phytoremediation by Amaranthus hypochondriacus L. Prevalence of antibiotic and metal resistance genes (ARGs and MRGs) in the soil was also evaluated using metagenomic approach. Results indicated that the phytoremediation of Cd and Zn contaminated soil was promoted by Chi, and Tri further reinforced this effect, along with the increased availability of Cd and Zn in soil. Meanwhile, combination of Chi and Tri enhanced the prevalence of ARGs (e.g., multidrug and ß-lactam resistance genes) and maintained a high level of MRGs (e.g., chromium, copper) in soil. Soil available Zn and Cd fractions were the main factors contributing to ARGs profile by co-selection, while boosted bacterial hosts (e.g., Mitsuaria, Solirubrobacter, Ramlibacter) contributed to prevalence of most MRGs (e.g., Cd). These findings indicate the potential risk of ARGs and MRGs propagation in phytoremediation of metal contaminated soils assisted by organic and biological agents.


Assuntos
Quitosana , Hypocreales , Metais Pesados , Poluentes do Solo , Cádmio/análise , Zinco/análise , Solo , Antibacterianos , Prevalência , Metais Pesados/análise , Biodegradação Ambiental , Bactérias , Resistência Microbiana a Medicamentos/genética , Poluentes do Solo/análise
13.
Orthod Craniofac Res ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037851

RESUMO

INTRODUCTION: Obesity and craniofacial structures are aetiologies of obstructive sleep apnoea (OSA). The effect of obesity onset on the craniofacial development and growth of obese OSA subjects has been suggested, but supporting data were lacking. This study aimed to assess the craniofacial features of adult obese OSA patients in relation to their obesity onset. MATERIALS AND METHODS: A total of 62 adult OSA patients were included in the study, consisting of 12 early-onset (i.e. before puberty), 21 late-onset (i.e. after puberty) and 29 non-obese. All participants underwent a sleep study and cephalometric radiograph. Cephalometric analysis was conducted to measure the craniofacial features among the groups. RESULTS: The early obesity onset group (n = 12) showed a more prognathic mandible, longer lower facial height, protrusive incisors, a more caudal position of the hyoid bone and a wider lower airway. The late-onset group (n = 21) had more proclined and protrusive upper incisors, a shallower overbite, a more inferiorly positioned hyoid bone and an obtuse craniocervical angle. The overall obese group showed a combination of the findings above, plus a shorter soft palate and shorter airway length. There was no significant difference between early and late obesity onset groups. However, the early group showed a tendency for a shallower or decreased mandibular plane angle and deeper overbite. CONCLUSIONS: The current pilot study had many limitations but holds important information as a hypothesis generator. Craniofacial features of OSA patients with different obesity onset showed discrepancies and were distinguished from non-obese controls. Adult OSA patients with an early obesity onset showed a tendency for a more hypodivergent growth pattern than those with a late obesity onset.

14.
Mar Pollut Bull ; 194(Pt B): 115349, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37556975

RESUMO

The Sargassum bloom has severely impacted the ecological environment of the East China Sea and the Yellow Sea, causing significant economic losses. In recent years, deep learning has seen extensive development due to its outstanding feature extraction capabilities. However, the deep learning process typically involves a large number of parameters and computations. To address this issue, this paper proposes a lightweight deep learning network based on the U-Net framework, called SLWE-NET, which uses lightweight modules to replace the feature extraction modules in U-Net. In this experiment, SLWE-Net performed the best in both extraction accuracy and model lightweight. Compared to the formal U-Net, the number of parameters decreased by 65.83 %, the model size reduced from 94.97 MB to 32.51 MB, and the mIoU increased to 93.81 %. Therefore, the method proposed in this paper is beneficial for Sargassum extraction and provides a basis for operational monitoring.


Assuntos
Sargassum , China , Meio Ambiente
15.
J Sep Sci ; 46(19): e2300205, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525342

RESUMO

The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.


Assuntos
Manejo de Espécimes , Porosidade , Adsorção , Preparações Farmacêuticas
16.
Opt Express ; 31(11): 17861-17877, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381509

RESUMO

In large-scale water quality evaluation, traditional field-measured data lack spatial-temporal representativeness, and the role of conventional remote sensing parameters (SST, Chla, TSM, etc.) is controversial. By calculating and grading the hue angle of a water body, a Forel-Ule index (FUI) can be obtained, which provides a comprehensive statement of water condition. Using MODIS imagery, hue angles are extracted with better accuracy than the literature's method. It is found that FUI changes in the Bohai Sea have correlated consistently with water quality. The decreasing trend of non-excellent water quality areas in the Bohai Sea was highly correlated with FUI (R2 = 0.701) during the government-dominated land-based pollution reduction program (2012-2021). FUI can monitor and evaluate seawater quality.

17.
Drug Des Devel Ther ; 17: 1371-1386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181826

RESUMO

Purpose: This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods: We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results: Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion: The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , RNA Ribossômico 16S , Metagenômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
18.
Arch Microbiol ; 205(5): 179, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029820

RESUMO

Pogostemon cablin (Blanco) Benth (PCB), a medicinal and edible homologous Chinese herb, has a protective effect on the structure and function of intestine. In this study, we aimed to investigate the effect of PCB granule (PCBG) on the improvement of irinotecan-induced intestinal mucositis and the regulation of intestinal microorganisms in mice. Our results demonstrated that PCBG supplementation significantly improved diarrhea symptoms caused by irinotecan, as evidenced by inhibiting weight loss, reversing intestinal atrophy, protecting against splenomegaly and balancing oxidative stress. Furthermore, compared with the model group, PCBG restored the intestinal morphology and improved intestinal barrier dysfunction by promoting the expression of tight junction proteins and mucin. Moreover, high-throughput sequencing analysis revealed that PCBG improved the flora disorder caused by irinotecan and regulated microbial community structure, such as decreasing the relative abundance of Bacteroides as well as increasing the relative abundance of Lactobacillus. Meanwhile, the disordered microbial functions in intestinal mucositis mice were recovered more closely to the controls by PCBG. Finally, we found that a robust correlation between the specific microbiota and intestinal mucositis-related index. In summary, these findings revealed the beneficial effects of PCBG on the intestinal barrier and gut microbiota of irinotecan-induced intestinal mucositis, which may be one of the potential strategies to reduce the clinical side effects of irinotecan.


Assuntos
Microbioma Gastrointestinal , Mucosite , Pogostemon , Camundongos , Animais , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Irinotecano/efeitos adversos , Irinotecano/metabolismo , Mucosa Intestinal , Intestinos
19.
Anal Chem ; 95(17): 6971-6979, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37068187

RESUMO

The similarity and complexity of chiral amino acids (AAs) in complex samples remain a significant challenge in their analysis. In this work, the chiral metal-organic framework (MOF)-controlled cyclic chemiluminescence (CCL) reaction is developed and utilized in the analysis of enantiomer AAs. The chiral MOF of d-Co0.75Zn0.25-MOF-74 is designed and prepared by modifying the Co0.75Zn0.25-MOF-74 with d-tartaric acid. The developed chiral bimetallic MOF can not only offer the chiral recognize sites but also act as the catalyst in the cyclic luminol-H2O2 reaction. Moreover, a distinguishable CCL signal can be obtained on enantiomer AAs via the luminol-H2O2 reaction with the control of d-Co0.75Zn0.25-MOF-74. The amplified difference of enantiomer AAs can be quantified by the decay coefficient (k-values) which are calculated from the exponential decay fitting of their obtained CCL signals. According to simulation results, the selective recognition of 19 pairs of AAs is controlled by the pore size of the MOF-74 and their hydrogen-bond interaction with d-tartaric acid on the chiral MOF. Furthermore, the k-values can also be used to estimate the change of chiral AAs in complex samples. Consequently, this chiral MOF-controlled CCL reaction is applied to differentiate enantiomer AAs involved in the quality monitoring of dairy products and auxiliary diagnosis, which provides a new approach for chiral studies and their potential applications.


Assuntos
Aminoácidos , Estruturas Metalorgânicas , Aminoácidos/análise , Luminescência , Luminol/química , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas/química
20.
Curr Biol ; 33(8): 1565-1572.e3, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36893760

RESUMO

Morphology usually serves as an effective proxy for functional ecology,1,2,3,4,5 and evaluating morphological, anatomical, and ecological changes permits a deeper understanding of the nature of diversification and macroevolution.5,6,7,8,9,10,11,12 Lingulid (order Lingulida) brachiopods are both diverse and abundant during the early Palaeozoic but decrease in diversity over time, with only a few genera of linguloids and discinoids present in modern marine ecosystems, resulting in them frequently being referred to as "living fossils."13,14,15 The dynamics that drove this decline remain uncertain, and it has not been determined if there is an associated decline in morphological and ecological diversity. Here, we apply geometric morphometrics to reconstruct global morphospace occupation for lingulid brachiopods through the Phanerozoic, with results showing that maximum morphospace occupation was reached by the Early Ordovician. At this time of peak diversity, linguloids with a sub-rectangular shell shape already possessed several evolutionary features, such as the rearrangement of mantle canals and reduction of the pseudointerarea, common to all modern infaunal forms. The end Ordovician mass extinction has a differential effect on linguloids, disproportionally wiping out those forms with a rounded shell shape, while forms with sub-rectangular shells survived both the end Ordovician and the Permian-Triassic mass extinctions, leaving a fauna predominantly composed of infaunal forms. For discinoids, both morphospace occupation and epibenthic life strategies remain consistent through the Phanerozoic. Morphospace occupation over time, when considered using anatomical and ecological analyses, suggests that the limited morphological and ecological diversity of modern lingulid brachiopods reflects evolutionary contingency rather than deterministic processes.


Assuntos
Ecossistema , Extinção Biológica , Animais , Biodiversidade , Invertebrados/genética , Evolução Biológica , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA