Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4268-4277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294081

RESUMO

BACKGROUND: Crop recognition is the basis of intelligent agricultural machine operations. Visual perception methods have achieved high recognition accuracy. However, the reliability of such methods is difficult to guarantee because of the complex environment of paddy fields. Tactile sensing methods are not affected by background or environmental interference, and have high reliability. However, in an ideal environment, the recognition accuracy is not as high as that of the visual method. RESULTS: To balance the accuracy and reliability of rice plant recognition, a combined visual-tactile method was proposed in this study. A rice plant recognition device was developed with a poly(vinylidene fluoride) sensor embedded inside the device as a tactile perceptron and a graphic designed as a visual perceptron. The primary role of the tactile perceptron is to initially recognize rice plants and provide a time point for image capture for visual perception. The main role of the visual perceptron is to extract features from the captured images and recognize rice plants again. The results of tactile and visual recognition were eventually fused to achieve accurate recognition of rice plants. CONCLUSION: The contact speed between the recognition perceptron and rice-weed was selected for the field performance test based on the real situation of paddy field operation. The results showed that the accuracy and reliability of rice plant recognition decreased as the travelling speed of the paddy field operation machine increased. The results of this study provide a basis for intelligent farm machinery operations in rice fields. © 2024 Society of Chemical Industry.


Assuntos
Oryza , Reprodutibilidade dos Testes , Agricultura , Redes Neurais de Computação , Fazendas
2.
Adv Mater ; 36(13): e2310248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118456

RESUMO

Metal halide perovskite films have gained significant attention because of their remarkable optoelectronic performances. However, their poor stability upon the severe environment appears to be one of the main facets that impedes their further commercial applications. Herein, a method to improve the stability of flexible photodetectors under water and humidity environment without encapsulation is reported. The devices are fabricated using the physical vapor deposition method (Pulse Laser Deposition & Thermal Evaporation) under high-vacuum conditions. An amorphous organic Rubrene film with low molecular polarity and high elastic modulus serves as both a protective layer and hole transport layer. After immersed in water for 6000 min, the photoluminescence intensity attenuation of films only decreased by a maximum of 10%. The demonstrator device, based on Rubrene/CsPbBr3/ZnO heterojunction confirms that the strategy not only enhances device moisture and mechanical stability but also achieves high sensitivity in optoelectronic detection. In self-powered mode, it has a fast response time of 79.4 µs /207.6 µs and a responsivity 124 mA W-1. Additionally, the absence of encapsulation simplifies the fabrication of complex electrodes, making it suitable for various applications. This study highlights the potential use of amorphous organic films in improving the stability of perovskite-based flexible devices.

3.
Adv Mater ; 35(2): e2208275, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36268544

RESUMO

Controllable manipulation of specific spin configurations of magnetic materials is the key to constructing functional spintronic devices. Here, it is demonstrated by integrating the merits of ferromagnetic, ferrimagnetic, and antiferromagnetic spin configurations into one synthetic antiferromagnetic (SAF) heterostructure by controlling both long-range oscillatory interlayer coupling and neighboring ferrimagnetic coupling. A controllable manipulation of four types of spin configurations of the Pt/[Co/Pt/Co]/Ru/CoTb SAF heterostructures composed of ferromagnetic Co/Pt/Co and ferrimagnetic CoTb layers is successfully achieved. In particular, the compensated magnetization, enhanced anomalous Hall resistance in the remanence state, wide-temperature spin-orbit torque switching of magnetization, and high immunity to the external magnetic field are simultaneously obtained in one of the SAF heterojunctions with macroscopic interlayer antiferromagnetic coupling. This design concept of engineering spin configurations may enable efficient spin manipulation for customized memory and logic applications.

4.
Adv Mater ; 35(8): e2207353, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36479745

RESUMO

Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO2 multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO2 and Fe/TiO2 multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO2 underlines its potential in a voltage-driven ON-OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO2 interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO2 surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.

5.
ACS Appl Mater Interfaces ; 14(35): 40093-40101, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833831

RESUMO

Halide perovskites (HPs) with marvelous optical and electrical properties are regarded as one of the competitive candidates for building next-generation photodetectors (PDs). However, combining their excellent properties with satisfactory long-term robustness is still challenging, ultimately limiting the practical applications of HP-based PDs. Herein, a high vacuum deposition system is employed to fabricate flexible self-powered PDs with a ZnO/CsPbBr3/γ-CuI structure, which shows excellent stability and outstanding performance in weak light detection. Benefiting from the improved crystallinity and optimized device structure, a high detectivity of 8.1 × 1013 Jones and a rapid response speed (rise/decay time of 3.9/1.8 µs) are obtained in this self-powered device. Furthermore, the unencapsulated device exhibits intriguing environmental stability and mechanical flexibility. The photocurrent remains unchanged after 7000 s of continuous operation or 100 bending cycles. Furthermore, a 15 × 15 PD array is fabricated as an image sensor. A high contrast image of the target object can be obtained owing to the high sensitivity and uniformity of the self-powered PDs. These results demonstrate the feasibility and practicality of the ZnO/CsPbBr3/γ-CuI heterojunction for applications in weak light detection and image formation.

6.
RSC Adv ; 12(28): 17706-17714, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35765332

RESUMO

Two-dimensional (2D) layered materials have attracted intensive attention in recent years due to their rich physical properties, and shown great promise due to their low power consumption and high integration density in integrated electronics. However, mostly limited to mechanical exfoliation, large scale preparation of the 2D materials for application is still challenging. Herein, quasi-2D α-molybdenum oxide (α-MoO3) thin film with an area larger than 100 cm2 was fabricated by magnetron sputtering, which is compatible with modern semiconductor industry. An all-solid-state synaptic transistor based on this α-MoO3 thin film is designed and fabricated. Interestingly, by proton intercalation/deintercalation, the α-MoO3 channel shows a reversible conductance modulation of about four orders. Several indispensable synaptic behaviors, such as potentiation/depression and short-term/long-term plasticity, are successfully demonstrated in this synaptic device. In addition, multilevel data storage has been achieved. Supervised pattern recognition with high recognition accuracy is demonstrated in a three-layer artificial neural network constructed on this α-MoO3 based synaptic transistor. This work can pave the way for large scale production of the α-MoO3 thin film for practical application in intelligent devices.

7.
J Sci Food Agric ; 102(15): 7343-7352, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765972

RESUMO

BACKGROUND: In the past decades, ever-increasing fertilizer use has led to a continuous increase in agricultural output. However, serious waste of resources occurs because of the low utilization of fertilizers. Polyaspartic acid (PASP) is a biodegradable polymer that can be used as a fertilizer synergist in agricultural production to improve the nutrient utilization capacity of plants. For polymers, the molecular weight (MW) often affects their effectiveness. However, little information is available on the effects of PASP MW in agriculture, especially on nitrogen leaching and plant element uptake. RESULTS: This work was conducted to identify the effect of PASPs with three different MWs - PASP-1 (MW: 5517), PASP-2 (MW: 6934), and PASP-3 (MW: 7568) - on nitrogen leaching, lettuce growth, and wheat cultivation. The results revealed that PASP favored plant growth and nitrogen accumulation in the soil, independent of crop species. PASP with a higher MW improved yields and the agronomic characteristics of lettuce and wheat. Furthermore, apparent amelioration of nitrogen use efficiency for lettuce (7.6%, 12.8%, and 15.0%) and wheat (4.6%, 8.1%, and 9.2%) was observed in the treatments with PASP addition. The effects and merits of PASPs on preventing ammonium nitrogen leaching and improving lettuce and wheat productivity were as follows: PASP-3 > PASP-2 > PASP-1. CONCLUSION: The MW of PASP is an essential factor affecting inorganic nitrogen leaching and crop productivity, and PASP with a higher MW (7568) is recommended for application in agriculture. © 2022 Society of Chemical Industry.


Assuntos
Fertilizantes , Nitrogênio , Agricultura/métodos , Peso Molecular , Nitrogênio/análise , Solo/química , Triticum
8.
ACS Nano ; 16(4): 6878-6885, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35349269

RESUMO

Controllable spin-orbit torque based nonvolatile memory is highly desired for constructing energy efficient reconfigurable logic-in-memory computing suitable for emerging data-intensive applications. Here, we report our exploration of the IrMn/Co/Ru/CoPt/CoO heterojunction as a potential candidate for applications in both multistate memory and programmable spin logic. The studied heterojunction can be programmed into four different magnetic configurations at will by tuning both the in-plane exchange bias at the interface of IrMn and Co layers and the out-of-plane exchange bias at the interface of CoPt and CoO layers. Moreover, on the basis of the controllable exchange bias effect, 10 states of nonvolatile memory and multiple logic-in-memory functions have been demonstrated. Our findings indicate that IrMn/Co/Ru/CoPt/CoO multilayered structures can be used as a building block for next-generation logic-in-memory and multifunctional multidimensional spintronic devices.

9.
Nat Commun ; 12(1): 2473, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931644

RESUMO

Programmable magnetic field-free manipulation of perpendicular magnetization switching is essential for the development of ultralow-power spintronic devices. However, the magnetization in a centrosymmetric single-layer ferromagnetic film cannot be switched directly by passing an electrical current in itself. Here, we demonstrate a repeatable bulk spin-orbit torque (SOT) switching of the perpendicularly magnetized CoPt alloy single-layer films by introducing a composition gradient in the thickness direction to break the inversion symmetry. Experimental results reveal that the bulk SOT-induced effective field on the domain walls leads to the domain walls motion and magnetization switching. Moreover, magnetic field-free perpendicular magnetization switching caused by SOT and its switching polarity (clockwise or counterclockwise) can be reversibly controlled in the IrMn/Co/Ru/CoPt heterojunctions based on the exchange bias and interlayer exchange coupling. This unique composition gradient approach accompanied with electrically controllable SOT magnetization switching provides a promising strategy to access energy-efficient control of memory and logic devices.

10.
ACS Appl Mater Interfaces ; 12(6): 7351-7357, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31958008

RESUMO

Two-dimensional (2D) materials have exotic intrinsic electronic band structures and are considered as revolutionary foundations for novel nanodevices. Band engineering of 2D materials may pave a new avenue to overcome numerous challenges in modern technologies, such as room temperature (RT) photodetection of light with photon energy below their band gaps. Here, we reported the pioneering RT MoS2-based photodetection in the terahertz (THz) region via introducing Mo4+ and S2- vacancies for rational band gap engineering. Both the generation and transport of extra carriers, driven by THz electromagnetic radiations, were regulated by the vacancy concentration as well as the resistivity of MoS2 samples. Utilizing the balance between the carrier concentration fluctuation and carrier-scattering probability, a high RT photoresponsivity of 10 mA/W at 2.52 THz was realized in an Mo-vacancy-rich MoS2.19 sample. This work overcomes the challenge in the excessive dark current of RT THz detection and offers a convenient way for further optoelectronic and photonic devices based on band gap-engineered 2D materials.

11.
Sci Bull (Beijing) ; 65(20): 1718-1725, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659244

RESUMO

Material functionalities strongly depend on the stoichiometry, crystal structure, and homogeneity. Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature. In order to verify the origin of the ferromagnetism, we employed a series of structural, chemical, and electronic state characterizations. Combined with electron microscopy and transport measurements, synchrotron-based grazing incident wide angle X-ray scattering, soft X-ray absorption and circular dichroism clearly reveal that the room-temperature ferromagnetism originates from the In0.23Co0.77O1-v amorphous phase with a large tunable range of oxygen vacancies. The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3, with the evolving electrical resistivity from 5 × 103 µΩ cm to above 2.5 × 105 µΩ cm. Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies, driving the system towards non-ferromagnetism and insulating regime. Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides, which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.

12.
J Agric Food Chem ; 67(27): 7616-7625, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251044

RESUMO

Rapid hydrolysis of urea results in further fertilization frequency and excessive nitrogen (N) input. A modified urea, dimethylolurea (DMU), was synthesized in this study. The structure of the sample was characterized by Fourier transform infrared and nuclear magnetic resonance analysis, manifesting the formation of DMU. N release investigation confirmed that DMU enabling provided a gradual N supply. The N leaching experiment indicated that increasing the applied DMU significantly reduced the NH4+-N, NO3--N, and total N leaching, compared with urea application alone. The application effect on maize and wheat was evaluated. The results revealed that singly applied DMU with 100% or 80% N input, irrespective of the amount, promoted crop yield and agronomic characteristic and N use efficiency (NUE) of maize and wheat, beyond urea with two split applications at the recommended rate. Thus, the potential availability of DMU was proven; this could be widely used in agricultural fields as a slow-release fertilizer.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Compostos de Metilureia/administração & dosagem , Nitrogênio/administração & dosagem , Agricultura/métodos , Preparações de Ação Retardada , Fertilizantes/análise , Compostos de Metilureia/síntese química , Compostos de Metilureia/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
13.
Opt Express ; 27(6): 8745-8755, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052687

RESUMO

We report the generation of mid-infrared (~2 µm) high repetition rate (MHz) sub-100 ns pulses in buried thulium-doped monoclinic double tungstate crystalline waveguide lasers using two-dimensional saturable absorber materials, graphene and MoS2. The waveguide (propagation losses of ~1 dB/cm) was micro-fabricated by means of ultrafast femtosecond laser writing. In the continuous-wave regime, the waveguide laser generated 247 mW at 1849.6 nm with a slope efficiency of 48.7%. The laser operated at the fundamental transverse mode with a linearly polarized output. With graphene as a saturable absorber, the pulse characteristics were 88 ns / 18 nJ (duration / energy) at a repetition rate of 1.39 MHz. Even shorter pulses of 66 ns were achieved with MoS2. Graphene and MoS2 are therefore promising for high repetition rate nanosecond Q-switched infrared waveguide lasers.

14.
ACS Nano ; 12(11): 11376-11385, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30335957

RESUMO

For van der Waals (vdW) heterostructures, optical and electrical properties ( e.g., saturable absorption and carrier dynamics) are strongly modulated by interlayer coupling, which may be due to effective charge transfer and band structure recombination. General theoretical studies have shown that the complementary properties of graphene and MoS2 enable the graphene/MoS2 (G/MoS2) heterostructure to be used as an important building block for various optoelectronic devices. Here, density functional theory was used to calculate the work function values of G/MoS2 with different thicknesses of MoS2, and its relaxation dynamic mechanism was illustrated. The results reveal that the G/MoS2 heterostructure interlayer coupling can be tuned by changing the thickness of MoS2, furthering the understanding of the fundamental charge-transfer mechanism in few-layer G/MoS2 heterostructures. The tunable carrier dynamics and saturable absorption were investigated by pump-probe spectroscopy and open-aperture Z-scan technique, respectively. In the experiments, we compared the performances of Q-switched lasers based on G/MoS2 heterostructures with different MoS2 layers. Taking advantage of ultrafast recovery time and good saturable absorption properties, a femtosecond solid-state laser at 1.0 µm with G/MoS2 heterostructure saturable absorber was successfully achieved. This study on interlayer coupling in G/MoS2 may allow various vdW heterostructures with controllable stacking to be fabricated and shows the promising applications of vdW heterostructures for ultrafast photonic devices.

15.
Adv Mater ; 30(50): e1804858, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311283

RESUMO

Photodetection using semiconductors is critical for capture, identification, and processing of optical information. Nowadays, broadband photodetection is limited by the underdeveloped mid-IR photodetection at room temperature (RT), primarily as a result of the large dark currents unavoidably generated by the Fermi-Dirac distribution in narrow-bandgap semiconductors, which constrains the development of some modern technologies and systems. Here, an electronic-structure strategy is proposed for designing ultrabroadband covering mid- and even far-IR photodetection materials operating at RT and a layered MoS2 is manifested with an engineered bandgap of 0.13 eV and modulated electronic state density. The sample is designed by introducing defect energy levels into layered MoS2 and its RT photodetection is demonstrated for wavelengths from 445 nm to 9.5 µm with an electronic state density-dependent peak photoresponsivity of 21.8 mA W-1 in the mid-IR region, the highest value among all known photodetectors. This material should be a promising candidate for modern optoelectronic devices and offers inspiration for the design of other optoelectronic materials.

16.
ACS Appl Mater Interfaces ; 10(29): 24905-24909, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969008

RESUMO

High performance of many spintronic devices strongly depends on the spin-polarized electrical transport, especially the magnetoresistance (MR) in magnetic heterojunctions. However, it has been a great challenge to distinguish the bulk MR and interface MR by transport measurements because the bulk resistance and interface resistance formed a series circuit in magnetic heterojunctions. Here, a unique interface-sensitive rectification MR method is proposed to distinguish the interface MR and bulk MR of nonmagnetic In/GeO x/n-Ge and magnetic Co/GeO x/n-Ge diode-like heterojunctions. It is demonstrated that the low-field "butterfly" hysteresis loop observed only in the conventional MR curve originates from the anisotropic MR of ferromagnetic bulk Co layer, whereas the orbit-related large nonsaturating positive MR contains contributions from both the Schottky interface and bulk Ge substrate. This rectification MR method could be extended to magnetic heterojunctions with asymmetric potential barriers to realize a deeper understanding of the fundamental interface-related functionalities.

17.
Nanoscale Res Lett ; 13(1): 92, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616353

RESUMO

Photoelectrochemical cell-typed self-powered UV detectors have attracted intensive research interest due to their low cost, simple fabrication process, and fast response. In this paper, SnO2-TiO2 nanomace arrays composed of SnO2 nanotube trunk and TiO2 nanobranches were prepared using soft chemical methods, and an environment-friendly self-powered UV photodetector using this nanostructure as the photoanode was assembled. Due to the synergistic effect of greatly accelerated electron-hole separation, enhanced surface area, and reduced charge recombination provided by SnO2-TiO2 nanomace array, the nanostructured detector displays an excellent performance over that based on bare SnO2 arrays. The impact of the growing time of TiO2 branches on the performance of UV photodetector was systematically studied. The device based on optimized SnO2-TiO2 nanomace arrays exhibits a high responsivity of 0.145 A/W at 365 nm, a fast rising time of 0.037 s, and a decay time of 0.015 s, as well as excellent spectral selectivity. This self-powered photodetector is a promising candidate for high-sensitivity, high-speed UV-detecting application.

18.
Sci Rep ; 7(1): 12554, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970542

RESUMO

Lithium-ion (Li-ion) batteries based on spinel transition-metal oxide electrodes have exhibited excellent electrochemical performance. The reversible intercalation/deintercalation of Li-ions in spinel materials enables not only energy storage but also nondestructive control of the electrodes' physical properties. This feature will benefit the fabrication of novel Li-ion controlled electronic devices. In this work, reversible control of ferromagnetism was realized by the guided motion of Li-ions in MnFe2O4 and γ-Fe2O3 utilizing miniature lithium-battery devices. The in-situ characterization of magnetization during the Li-ion intercalation/deintercalation process was conducted, and a reversible variation of saturation magnetization over 10% was observed in both these materials. The experimental conditions and material parameters for the control of the ferromagnetism are investigated, and the mechanism related to the magnetic ions' migration and the exchange coupling evolution during this process was proposed. The different valence states of tetrahedral metal ions were suggested to be responsible for the different performance of these two spinel materials.

19.
Nanoscale ; 9(41): 16073-16078, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29034397

RESUMO

The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

20.
Carbohydr Polym ; 166: 256-263, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385231

RESUMO

The molecular dynamics (MD) simulation method was used to investigate the hydrogen bonding energy of starch/glycerol system under different temperatures (range from 90°C to 120°C) and different glycerol contents (range from 20% to 40%, based on dry starch weight). These effects on the hydrogen bonding energy (including the total hydrogen bonding energy, hydrogen bonding energy of starch/starch, glycerol/glycerol, and starch/glycerol) were analyzed in detail. Meanwhile, glycerol plasticized starch films were prepared using casting method. The relationship between the hydrogen bonding energy and the performances of thermoplastic starch film (TPSF), such as crystallinity, mechanical properties and water uptake determined experimentally, were revealed and discussed. The results indicated that glycerol/starch film contained strong hydrogen bonding interaction which could be increased by decreasing the temperature or increasing the glycerol content. The hydrogen bonding interaction is the key factor for the preparation of the plasticized starch material, and the plasticized mechanism can be interpreted according to the analytical results of the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...