Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 31(14): 1015-1023, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32858649

RESUMO

Neural stem cells (NSCs) are self-renewing, multipotent cells, and remain in our brains throughout life. They could be activated by brain damage and involved in the central nervous system (CNS) repair and motor functional recovery. Previous research demonstrated that miR-221 could regulate proliferation, differentiation, and survival. However, the effect of miR-221 on NSCs remains unknown. In this study, we showed that overexpression of miR-221 inhibited the expression of phosphatase and tensin homolog (PTEN) protein and increased the phosphorylation level of protein kinase B (AKT). More importantly, an AKT-specific inhibitor abolished the effect of miR-221 on the phosphorylation level of AKT. 5-Bromo-2-deoxyUridine (BrdU) incorporation assay and Cyclin D1 expression showed that miR-221 overexpression further promoted the NSCs proliferation. However, knocking down miR-221 inhibited cell proliferation. The AKT-specific inhibitor also blocked the proliferative efficiency of miR-221. These results demonstrated that miR-221 overexpression promoted the proliferation of cultured rat NSCs, for which the PTEN/AKT pathway activation was one possible mechanism. Our research may provide a novel investigating strategy to improve stem cell treatment for CNS diseases.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Células-Tronco Neurais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Ciclina D1/metabolismo , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Ratos , Transdução de Sinais
2.
Korean J Orthod ; 44(6): 320-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25473648

RESUMO

OBJECTIVE: To investigate the involvement of ephrinB2 in periodontal tissue remodeling in compression areas during orthodontic tooth movement and the effects of compressive force on EphB4 and ephrinB2 expression in osteoblasts and osteoclasts. METHODS: A rat model of experimental tooth movement was established to examine the histological changes and the localization of ephrinB2 in compressed periodontal tissues during experimental tooth movement. RAW264.7 cells and ST2 cells, used as precursor cells of osteoclasts and osteoblasts, respectively, were subjected to compressive force in vitro. The gene expression of EphB4 and ephrinB2, as well as bone-associated factors including Runx2, Sp7, NFATc1, and calcitonin receptor, were examined by quantitative real-time polymerase chain reaction (PCR). RESULTS: Histological examination of the compression areas of alveolar bone from experimental rats showed that osteoclastogenic activities were promoted while osteogenic activities were inhibited. Immunohistochemistry revealed that ephrinB2 was strongly expressed in osteoclasts in these areas. Quantitative real-time PCR showed that mRNA levels of NFATc1, calcitonin receptor, and ephrinB2 were increased significantly in compressed RAW264.7 cells, and the expression of ephrinB2, EphB4, Sp7, and Runx2 was decreased significantly in compressed ST2 cells. CONCLUSIONS: Our results indicate that compressive force can regulate EphB4 and ephrinB2 expression in osteoblasts and osteoclasts, which might contribute to alveolar bone resorption in compression areas during orthodontic tooth movement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA