Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717735

RESUMO

Limosilactobacillus fermentum is an important member of the lactic acid bacteria group and holds immense potential for probiotic properties in human health and relevant industries. In this study, a comparative probiogenomic approach was applied to analyze the genome sequence of L. fermentum 3872, which was extracted from a commercially available yogurt sample, along with 20 different publicly available strains. Results indicate that the genome size of the characterized L. fermentum 3892 strain is 2,057,839 bp, with a single- and circular-type chromosome possessing a G + C content of 51.69%. The genome of L. fermentum 3892 strain comprises a total of 2120 open reading frames (ORFs), two genes encoding rRNAs, and 53 genes encoding tRNAs. Upon comparative probiogenomic analysis, two plasmid sequences were detected among the study strains, including one for the L. fermentum 3872 genome, which was found between position 1,288,203 and 1,289,237 with an identity of 80.98. The whole-genome alignment revealed 2223 identical sites and a pairwise identity of 98.9%, indicating a significant difference of 1.1% among genome strains. Comparison of amino acid encoding genes among strains included in this study suggests that the strain 3872 exhibited the highest degree of amino acids present, including glutamine, glutamate, aspartate, asparagine, lysine, threonine, methionine, and cysteine. The comparative antibiotic resistome profiling revealed that strain 3872 exhibited a high resistant capacity only to ciprofloxacin antibiotics as compared to other strains. This study provides a genomic-based evaluation approach for comparative probiotic strain analysis in commercial foods and their significance to human health.

2.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722426

RESUMO

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regiões Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinais Direcionadores de Proteínas/genética
3.
Neurochem Int ; 177: 105759, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735393

RESUMO

BACKGROUND: Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear. METHODS: Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining. RESULTS: Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis. CONCLUSIONS: circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.


Assuntos
Exossomos , Ferroptose , RNA Circular , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Exossomos/metabolismo , Animais , Ferroptose/fisiologia , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/biossíntese , Camundongos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo
4.
J Imaging Inform Med ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637423

RESUMO

We aimed to develop and validate a deep convolutional neural network (DCNN) model capable of accurately identifying spondylolysis or spondylolisthesis on lateral or dynamic X-ray images. A total of 2449 lumbar lateral and dynamic X-ray images were collected from two tertiary hospitals. These images were categorized into lumbar spondylolysis (LS), degenerative lumbar spondylolisthesis (DLS), and normal lumbar in a proportional manner. Subsequently, the images were randomly divided into training, validation, and test sets to establish a classification recognition network. The model training and validation process utilized the EfficientNetV2-M network. The model's ability to generalize was assessed by conducting a rigorous evaluation on an entirely independent test set and comparing its performance with the diagnoses made by three orthopedists and three radiologists. The evaluation metrics employed to assess the model's performance included accuracy, sensitivity, specificity, and F1 score. Additionally, the weight distribution of the network was visualized using gradient-weighted class activation mapping (Grad-CAM). For the doctor group, accuracy ranged from 87.9 to 90.0% (mean, 89.0%), precision ranged from 87.2 to 90.5% (mean, 89.0%), sensitivity ranged from 87.1 to 91.0% (mean, 89.2%), specificity ranged from 93.7 to 94.7% (mean, 94.3%), and F1 score ranged from 88.2 to 89.9% (mean, 89.1%). The DCNN model had accuracy of 92.0%, precision of 91.9%, sensitivity of 92.2%, specificity of 95.7%, and F1 score of 92.0%. Grad-CAM exhibited concentrations of highlighted areas in the intervertebral foraminal region. We developed a DCNN model that intelligently distinguished spondylolysis or spondylolisthesis on lumbar lateral or lumbar dynamic radiographs.

5.
J Biomed Mater Res B Appl Biomater ; 112(2): e35378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356051

RESUMO

Globally, peripheral nerve injury (PNI) is a common clinical issue. Successfully repairing severe PNIs has posed a major challenge for clinicians. GW3965 is a highly selective LXR agonist, and previous studies have demonstrated its positive protective effects in both central and peripheral nerve diseases. In this work, we examined the potential reparative effects of GW3965-loaded polylactic acid co-glycolic acid microspheres in conjunction with a chitosan nerve conduit for peripheral nerve damage. The experiment revealed that GW3965 promoted Schwann cell proliferation and neurotrophic factor release in vitro. In vivo experiments conducted on rats showed that GW3965 facilitated the restoration of motor function, promoted axon and myelin regeneration in the sciatic nerve, and enhanced the microenvironment of nerve regeneration. These results offer a novel therapeutic approach for the healing of nerve damage. Overall, this work provides valuable insights and presents a promising therapeutic strategy for addressing PNI.


Assuntos
Benzoatos , Benzilaminas , Quitosana , Traumatismos dos Nervos Periféricos , Ratos , Animais , Quitosana/farmacologia , Receptores X do Fígado/uso terapêutico , Microesferas , Células de Schwann , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Regeneração Nervosa
6.
Eur J Pharmacol ; 963: 176271, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113965

RESUMO

Respiratory syncytial virus (RSV) pneumonia is the main cause of acute bronchiolitis in infants. Luteolin-7-O-glucoside (LUT-7G) is a natural flavonoid, which exists in a variety of plants and has the potential to treat viral pneumonia. We established RSV pneumonia mouse models and RSV-infected cell models. Clodronate liposomes were used to deplete macrophages. We used HE staining and immunohistochemistry to determine inflammatory damage and virus replication. We detected the expression levels of inflammatory factors and IFN-ß through qPCR and ELISA. JC-1 kit was used for detecting the cell mitochondrial Membrane potential (MMP). ROS, SOD, and MDA kits were used for detecting intracellular oxidative stress damage. Metabolites of TCA in lung tissue and serum of mice were detected by GC-MS. Pharmacodynamic studies have shown that intervention with LUT-7G can alleviate lung tissue damage caused by RSV infection, inhibit RSV replication, and downregulate TNF-α, IL-1ß, and IL-6 mRNA expression. LUT-7G upregulated the IFN-ß content and the expression of IFN-ß, ISG15, and OAS1 mRNA. In vitro, LUT-7G inhibited RSV-induced cell death, reversed the RSV-induced decrease of MMP and decreased intracellular oxidative stress. Target metabonomics showed that RSV infection upregulated the levels of glycolysis and TCA metabolites in lung tissue and serum, while LUT-7G could improve the disorder of glucose metabolism. The results indicate that LUT-7G can promote the release of IFN-ß in the lung, alleviate inflammatory damage, and inhibit RSV replication during RSV infection. These effects may be achieved by protecting the mitochondrial function of alveolar macrophages and correcting the disorder of glucose metabolism.


Assuntos
Interferon beta , Luteolina , Mitocôndrias , Infecções por Vírus Respiratório Sincicial , Animais , Humanos , Camundongos , Glucose/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Pneumonia/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , RNA Mensageiro , Luteolina/farmacologia , Interferon beta/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Commun Biol ; 6(1): 1243, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066175

RESUMO

Protein post-translational modifications (PTMs) with various acyl groups play central roles in Streptomyces. But whether these acyl groups can be further modified, and the influences of these potential modifications on bacterial physiology have not been addressed. Here in Streptomyces roseosporus with rich crotonylation, a luciferase monooxygenase LimB is identified to elaborately regulate the crotonylation level, morphological development and antibiotic production by oxidation on the crotonyl groups of an acetyl-CoA synthetase Acs. This chemical modification on crotonylation leads to Acs degradation via the protease ClpP1/2 pathway and lowered intracellular crotonyl-CoA pool. Thus, we show that acyl groups after PTMs can be further modified, herein named post-PTM modification (PPM), and LimB is a PTM modifier to control the substrate protein turnover for cell development of Streptomyces. These findings expand our understanding of the complexity of chemical modifications on proteins for physiological regulation, and also suggest that PPM would be widespread.


Assuntos
Ligases , Streptomyces , Acetilcoenzima A , Oxigenases de Função Mista , Proteínas
8.
World J Microbiol Biotechnol ; 40(1): 35, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057620

RESUMO

Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
9.
Prep Biochem Biotechnol ; : 1-8, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843104

RESUMO

Heterogous expression of lignin peroxidase (LiP) from Phanerochaete chrysosporium was performed in by E. coli prokaryotic expression system, and pure LiP was prepared by washing, refolding, and purification. The enzyme activity was measured by the resveratrol oxidation method. The effects of different chemicals on LiP activity were explored by adding different kinds of metal ions, acids/phenols, and surfactants. The optimal pH and temperature are 4.2 and 40 °C. The single-factor screening experiment showed that adding 1 mM Mn2+, 0.1 mM DL-lactic acid, and 2% PEG-4000 had the best promotion effect on the enzyme activity of recombinant LiP, which was 160.61%, 188.46%, and 247.83%, respectively. Further, the synergistic addition of Mn2+ and PEG-4000 achieved the best enzyme activity promotion effect of 277.51%. In addition, the addition of DL-lactic acid alone could promote LiP activity. However, the co-addition of lactic acid with Mn2+ and PEG-4000 contributed only 247.87%, which indicated that the addition of DL-lactic acid had an inhibitory effect when applied synergistically. For the first time, it was found that PEG-4000 increased LiP enzyme activity obviously and had a synergistic effect with Mn2+, serving as a reference for LiP in studies and applications pertaining to lignin breakdown.

10.
Front Pharmacol ; 14: 1159829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601051

RESUMO

Jianpi Yangzheng Xiaozheng decoction (JPYZXZ) is an empirical traditional Chinese medicine formula that has been reported to significantly prolong the survival of patients with advanced gastric cancer (GC). However, its underlying mechanism have not been fully elucidated. The present work aims to explore the possible mechanism of JPYZXZ on regulating GC progression. We firstly confirmed the inhibitory effect of JPYZXZ in GC MKN74 cells and 615-strain mice, which was possibly mediated with IL-6/JAK2/STAT3 pathway dependent PD-L1 expression. Moreover, we showed that JPYZXZ diminished the expression levels of GC-derived exosomal PD-L1 in MFC murine cells and xenograft GC model, as well as stage IIA-IIIB GC patients. We further found that in different types of tumor-infiltrating immune cells, PD-L1 expression was most positively correlated with myeloid-derived suppressor cells (MDSCs) in GC in the TISIDB database. We isolated exosomes derived from supernatants of MFC cells and co-cultured with bone marrow cells derived from C57BL/6 mice, and further revealed that the expansion of MDSCs was mediated by GC-derived exosomal PD-L1. Meanwhile, our results indicated that JPYZXZ inhibited the delivery of exosomal PD-L1 from GC cells to bone marrow cells, thereby alleviating exosomal PD-L1-induced differentiation and expansion of MDSCs in the tumor microenvironment. This led to a decrease in the levels of several immunosuppressive factors, including iNOS, Arg-1, TGF-ß, IL-10, and IL-6, in 615-strain mice. Moreover, clinical data also revealed a significant positive relationship between exosomal PD-L1 and polymorphonuclear MDSCs under the JPYZXZ treatment in stage IIA-IIIB GC patients. In conclusion, our study confirmed that exosomal PD-L1 could be a key factor in controlling MDSCs differentiation in GC. JPYZXZ alleviated GC progression via suppressing exosomal PD-L1 mediated expansion of MDSCs, thereby remodeling the immunosuppressive tumor microenvironment, which provided the experimental evidence for the clinical application of JPYZXZ in the treatment of GC via PD-L1.

11.
World J Clin Cases ; 11(22): 5358-5364, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37621589

RESUMO

BACKGROUND: The combined anterior/posterior approach appears to be capable of reconstructing spinal stability, correcting thoracolumbar deformity, and promoting neural recovery in severe thoracolumbar fracture dislocation. However, this type of operation requires changing the body position during the procedure, resulting in a lengthy operation time. As a universal surgical robot, TINAVI robot has achieved good surgical results in clinical surgery. But to our knowledge, no reports describing TINAVI robot-assisted single lateral position anteroposterior surgery for thoracolumbar fracture dislocation. CASE SUMMARY: We describe a case of a 16-year-old female patient with severe thoracolumbar fracture and dislocation underwent surgery assisted by the TINAVI robot. A one-stage combined anterior and posterior operation was performed on a severe thoracolumbar fracture dislocation using the TINAVI robot, and the operation was completed in right lateral position. CONCLUSION: The TINAVI robot-assisted one-stage anterior and posterior surgery in right lateral position for severe thoracolumbar fracture and dislocation is both safe and effective.

12.
Environ Pollut ; 336: 122458, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633433

RESUMO

Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.

13.
Skeletal Radiol ; 52(8): 1577-1583, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36964792

RESUMO

OBJECTIVE: The purpose of this study is to develop and validate a deep convolutional neural network (DCNN) model to automatically identify the manufacturer and model of hip internal fixation devices from anteroposterior (AP) radiographs. MATERIALS AND METHODS: In this retrospective study, 1721 hip AP radiographs, including six internal fixation devices from 1012 patients, were collected from an orthopedic center between June 2014 and June 2022 to establish a classification network. The images were divided into training set (1106 images), validation set (272 images), and test set (343 images). The model efficacy is evaluated by using the data on the test set. The overall TOP-1 accuracy, and the precision, sensitivity, specificity, and F1 score of each model are calculated, and receiver operating characteristic (ROC) curves are plotted to evaluate the model performance. Gradient-weighted class activation mapping (Grad-CAM) images are used to determine the image features that are most important for DCNN decisions. RESULTS: A total of 1378 (80%) images were used for model development, and model efficacy was validated on a test set with 343 (20%) images. The overall TOP-1 accuracy was 98.5%. The area under the receiver operating characteristic curve (AUC) values for each internal fixation model were 1.000, 1.000, 0.980, 1.000, 0.999, and 1.000, respectively. Gradient-weighted class activation mapping showed the unique design of the internal fixation device. CONCLUSION: We developed a deep convolutional neural network model that can identify the manufacturer and model of hip internal fixation devices from the hip AP radiographs.


Assuntos
Aprendizado Profundo , Humanos , Estudos Retrospectivos , Redes Neurais de Computação , Radiografia , Fixadores Internos
14.
Signal Transduct Target Ther ; 8(1): 120, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959211

RESUMO

Loss of TGF-ß-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-ß signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-ß signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-ß signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-ß signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-ß-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-ß, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-ß signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-ß signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-ß anti-growth responses.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fosforilação , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Tirosina/metabolismo
15.
Appl Microbiol Biotechnol ; 107(4): 1003-1017, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633625

RESUMO

Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Queratinas/metabolismo , Plumas/metabolismo , Concentração de Íons de Hidrogênio
16.
Oncol Rep ; 49(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36416343

RESUMO

Subsequently to the publication of the above article, and a Corrigendum that has already been published with the intention of showing corrected versions of Figs. 1 and 8 (DOI: 10.3892/or.2022.8348; published online on June 14, 2022), the authors have belatedly realized that the revisions made to Fig. 8 necessitated changes that should have been introduced into Fig. 9, although these were not attended to in the first corrigendum. Essentially, Fig. 8 was revised as the cell apoptosis and cell proliferation assays therein were poorly presented, which made the interpretation of the data difficult; Fig. 9 showed the fractions of apoptotic cells in the SKM­1 and THP­1 cell lines with lncENST00000444102 overexpression as this pertained to Fig. 8. A revised version of Fig. 9, presenting the analysis of the data shown in the revised version of Fig. 8, is shown opposite. In addition to the revision of Fig. 9, the sentence starting on p. 517, left­hand column, line 12 ["The flow cytometric apoptosis assay revealed that lncENST00000444102 overexpression promoted tumor cells to undergo apoptosis compared to control cells (P<0.001, Fig. 9)"] should be replaced with the following text, to reflect the change in the level of statistical significance: 'The flow cytometric apoptosis assay revealed that lncENST00000444102 overexpression promoted tumor cells to undergo apoptosis compared to control cells (P<0.01, Fig. 9)". Note that the revisions made to Figs. 8 and 9 in this paper have not had a major impact on the reported results, and do not affect the overall conclusions reported in the study. All the authors agree to the publication of this corrigendum. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this additional Corrigendum; furthermore, they apologize for any inconvenience caused to the readership of the Journal. [Oncology Reports 42: 509­520, 2019; DOI: 10.3892/or.2019.7175].

17.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236193

RESUMO

Graphene-based membranes have unique nanochannels and can offer advantageous properties for the water desalination process. Although tremendous efforts have been devoted to heightening membrane performance and broadening their application, there is still lack of a systematic literature review on the development and future directions of graphene-based membranes for desalination. In this mini-review, literature published between 2011 and 2022 were analyzed by using the bibliometric method. We found that the major contributors to these publications and the highest citations were from China and the USA. Nearly 80% of author keywords in this analysis were used less than twice, showing the broad interest and great dispersion in this field. The recent advances, remaining gaps, and strategies for future research, were discussed. The development of new multifunctional nanocomposite materials, heat-driven/solar-driven seawater desalination, and large-scale industrial applications, will be important research directions in the future. This literature analysis summarized the recent development of the graphene-based membranes for desalination application, and will be useful for researchers in gaining new insights into this field.

18.
Environ Pollut ; 313: 120137, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089141

RESUMO

Biological treatment is one of the most widely used methods to treat swine wastewater in wastewater treatment plants. The microbial community plays an important role in the swine slurry treatment system. However, limited information is available regarding the correlation between pollutant concentration and dominant microbial community in swine wastewater. This work aimed to study the profiling of microbial communities and their abundance in the 40 M3/day large-scale and step-by-step treatment pools of swine wastewater. Metagenome sequencing was applied to study the changes of microbial community structure in biochemical reaction pools. The results showed that in the heavily polluted pools, it was mainly Proteobacteria, Cyanobacteria, Chlorella and other strains that could tolerate high concentration of ammonia nitrogen to remove nitrogen and absorb chemical oxygen demand (COD). In the moderately polluted pools, Nitrospirae, Actinobacteria and other strains further cooperated to purify swine wastewater. In the later stage, the emergence of Brachionus indicated the reduction of water pollution. The dominant microbes and their abundance changed with the purification of swine wastewater in different stages. Moreover, the dominant microflora of swine wastewater treatment pools at all levels reflected little difference in phylum classification level, while in genus classification level, the dominant microflora manifested great difference. Findings demonstrated that the microorganisms maintained ecological balance and absorbed the nutrients in the swine wastewater treatment pools, so as to play the role of purifying sewage. Therefore, the stepwise purification of swine wastewater can be realized by adding bacteria and microalgae of different genera.


Assuntos
Chlorella , Poluentes Ambientais , Microbiota , Purificação da Água , Amônia/análise , Animais , Bactérias/genética , Poluentes Ambientais/análise , Metagenômica , Nitrogênio/análise , Esgotos/química , Suínos , Águas Residuárias/química , Purificação da Água/métodos
19.
Oncol Rep ; 48(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35703350

RESUMO

Following the publication of the above paper, the authors have realized that the cell apoptosis and cell proliferation assays in Fig. 8 were poorly presented, which made the interpretation of the data difficult. Furthermore, a change was also required to the text concerning the description of Fig. 8: The sentence starting on p. 517, left­hand column, line 7 ('The fraction of apoptotic cells was 22.41±2.596 in the lncENST00000444102-overexpressing SKM­1 cells, and 8.650±0.889 in the negative control; the fraction of apoptotic cells was 20.58±2.190 in the lncENST00000444102­overexpressing THP­1 cells and 8.192±0.997 in the negative control group (P<0.001, Fig. 8B)' should be replaced with the following text: 'Flow cytometry showed that the fraction of apoptotic cells increased in the lncENST00000444102­overexpressing SKM­1 and THP­1 cells, as determined by Annexin V­APC/7-AAD staining at 48 h (P<0.05; Fig. 8B)'. A revised version of Fig. 8, presenting the results of the flow cytometric analysis more clearly, is shown on the next page. Note that the revisions made to this figure have not had a major impact on the reported results, and do not affect the overall conclusions reported in the study. All the authors agree to the publication of this corrigendum. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum; furthermore, they apologize for any inconvenience caused to the readership of the Journal. [Oncology Reports 42: 509­520, 2019; DOI: 10.3892/or.2019.7175].

20.
Org Lett ; 24(21): 3781-3785, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35593884

RESUMO

1,4-Palladium migration has emerged as a reliable method for directed C-H functionalization. In contrast to coupling with carbon nucleophiles, limited examples with heteroatom nucleophiles have been reported. Herein we report a palladium-catalyzed intermolecular C(sp3)-H phosphorylation reaction via 1,4-palladium migration, which is often difficult because of the strong coordination of phosphorus reagents to palladium catalysts. Phosphorylation of C(sp3)-H bonds is accomplished in good reaction yields with excellent regioselectivity. The judicious selection of the phosphine ligand proved to be the key to the success of this cascade process.


Assuntos
Carbono , Paládio , Carbono/química , Catálise , Ligantes , Paládio/química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...