Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 50(15): 2705-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25081978

RESUMO

Strategies for treating liver cancer using radiation, chemotherapy combinations and tyrosine kinase inhibitors targeting specific mutations have provided longer survival times, yet multiple treatments are often needed and recurrences with new malignant phenotypes are not uncommon. New and innovative treatments are undoubtedly needed to successfully treat liver cancer. Over the last decade, nanosecond pulsed electric fields (nsPEFs) have shown promise in pre-clinical studies; however, these have been limited to treatment of skin cancers or xenographs in mice. In the present report, an orthotopic hepatocellular carcinoma (HCC) model is established in rats using N1-S1 HCC cells. Data demonstrate a response rate of 80-90% when 1000 pulses are delivered with 100ns durations, electric field strengths of 50kV/cm and repetition rates of 1Hz. N1-S1 tumours treated with nsPEFs expressed significant number of cells with active caspase-3 and caspase-9, but not caspase-8, indicating an intrinsic apoptosis mechanism(s) as well as caspase-independent mechanisms. Most remarkably, rats with successfully ablated tumours failed to re-grow tumours when challenged with a second injection of N1-S1 cells when implanted in the same or different liver lobe that harboured the original tumour. Given this protective effect, infiltration of immune cells and the presence of granzyme B expressing cells within days of treatment suggest the possibility of an anti-tumour adaptive immune response. In conclusion, NsPEFs not only eliminate N1-S1 HCC tumours, but also may induce an immuno-protective effect that defends animals against recurrences of the same cancer.


Assuntos
Carcinoma Hepatocelular/terapia , Modelos Animais de Doenças , Neoplasias Hepáticas/terapia , Tratamento por Radiofrequência Pulsada/métodos , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Granzimas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fatores de Proteção , Ratos Sprague-Dawley , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento
2.
Mol Ther Methods Clin Dev ; 1: 14043, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26015981

RESUMO

The impact of nanosecond pulsed electric fields (nsPEFs) on gene electrotransfer has not been clearly demonstrated in previous studies. This study was conducted to evaluate the influence of nsPEFs on the delivery of plasmids encoding luciferase or green fluorescent protein and subsequent expression in HACAT keratinocyte cells. Delivery was performed using millisecond electric pulses (msEPs) with or without nsPEFs. In contrast to reports in the literature, we discovered that gene expression was significantly increased up to 40-fold by applying nsPEFs to cells first followed by one msEP but not in the opposite order. We demonstrated that the effect of nsPEFs on gene transfection was time restricted. The enhancement of gene expression occurred by applying one msEP immediately after nsPEFs and reached the maximum at posttreatment 5 minutes, slightly decreased at 15 minutes and had a residual effect at 1 hour. It appears that nsPEFs play a role as an amplifier without changing the trend of gene expression kinetics due to msEPs. The effect of nsPEFs on cell viability is also dependent on the specific pulse parameters. We also determined that both calcium independent and dependent mechanisms are involved in nsPEF effects on gene electrotransfer.

3.
PLoS One ; 7(12): e51349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284682

RESUMO

It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.


Assuntos
Eletricidade , Mitocôndrias/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Egtázico/farmacologia , Humanos , Luz , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Compostos Organometálicos/farmacologia , Espalhamento de Radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA